АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Применение линейного уравнения парной регрессии

Читайте также:
  1. XI. Метод регрессии
  2. Алгебраические уравнения
  3. Биологическая эволюция, прогресс нашего биологического вида – это снижение примативности, повышение альтруистичности и укрепление парной половой структуры.
  4. Биологическая эволюция, прогресс нашего биологического вида — это снижение примативности, повышение альтруистичности и укрепление парной половой структуры.
  5. Виды деятельности линейного ИТР (мастера, прораба).
  6. Виды статистических величин, их применение в медицине. Интенсивные коэффициенты и коэффициенты соотношения, методика расчета, область применения.
  7. Внутренняя энергия идеального газа. Работа газа при изобарном расширении. Применение первого начала термодинамики к изопроцессам. Понятие о втором начале термодинамики.
  8. Волновое уравнение и его решение. Физический смысл волнового уравнения. Скорость распространения волн в различных средах.
  9. Вопрос 24 поверхности второго порядка (эллипсоид, цилиндры, конус) и их канонически уравнения. Исследование формы поверхности методом параллельных сечений.
  10. Вопрос 5. Какие ресурсные ограничения моделей общей задачи линейного программирования должны анализироваться в первую очередь?
  11. Вопрос №3. применение мер пресечения.
  12. Вопрос №6. Применение иностранного права

Прежде чем обсуждать вопросы использования уравнений парной регрессии, напомним, что парный корреляционный анализ не дает чистых мер влияния только одного изучаемого фактора. Если факторы взаимосвязаны, то парная связь измеряет влияние данного фактора и часть влияния прочих факторов, связанных с ним. И все же при тесной связи уравнение регрессии может стать полезным орудием анализа экономических, технологических, социальных или природных процессов.

349

 

вания средств. Так, в хозяйстве 6 получено от 1 коровы в среднем 31,8 ц молока, хотя при низком уровне затрат 1355 руб. на 1 корову и средней эффективности затрат было бы получено только по 26,5 ц молока. Фактический надой составил 120% к расчетному. Наоборот, хозяйство 9 получало по 26,7 ц вместо расчетных 35,6 ц. Следовательно, эффективность использования средств на производство молока в этом хозяйстве (1616 руб. на 1 корову) составила только: 26,7 : 35,7 — 75% от средней по совокупности.

Оценка хозяйственной деятельности по отклонениям от расчетных значений показателей на основе уравнения регрессии (тем более на основе многофакторных регрессионных моделей) гораздо более оправданна и содержательна, чем оценка результатов производства по отклонениям от среднего значения результативного признака в совокупности, без учета факторов ~ характеристик возможностей и природных условий предприятия.

Уравнение регрессии применимо и для прогнозирования возможных ожидаемых значений результативного признака. При этом следует учесть, что перенос (экстраполяция) закономерности связи, измеренной в варьирующей совокупности, в статике на динамику не является, строго говоря, корректным и требует проверки условий допустимости такого решения, которое выходит за рамки статистики и может быть сделано только специалистом, хорошо знающим объект (систему) и возможности его развития.

Ограничением прогнозирования на основе регрессионного уравнения, тем более парного, служит условие стабильности или по крайней мере малой изменчивости других факторов и условий изучаемого процесса, не связанных с ними. Если резко изменится «внешняя среда» протекающего процесса, прежнее уравнение регрессии результативного признака потеряет свое значение. В засушливый год доза удобрений может не оказать влияния на урожайность сельскохозяйственной культуры, так как последнюю лимитирует недостаточная влагообеспеченность.



Прогнозируемое значение результативного показателя получается при подстановке в уравнение регрессии ожидаемой величины факторного признака. Так, если подставить в уравнение у = 0,О347х - 20,49 расход средств на одну корову, рав-

 

Доверительные границы прогноза индивидуальных значений надоя молока на 1 корову при расходе 2200 руб. на 1 голову составляют с вероятностью нахождения внутри границ, равной 0,95:

55,85 ± 4,568 -2,14, или от 46,07 до 65,63 ц.

Главным источником ошибки (неопределенности) прогноза индивидуальных значений является не столько неопределенность прогноза линии регрессии, сколько значительная вариация надоев за счет других факторов, кроме входящих в уравнение регрессии.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)