АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Статистическая оценка надежности параметров парной регрессии и корреляции

Читайте также:
  1. X. Метод корреляции
  2. XI. Метод регрессии
  3. А) Оценка уровня подготовленности нового работника.
  4. Анализ активов организации и оценка эффективности их использования.
  5. Анализ безубыточности и оценка запаса финансовой прочности
  6. Анализ безубыточности и оценка запаса финансовой прочности
  7. Анализ и оценка денежных потоков предприятия
  8. Анализ и оценка проекта СФЗ
  9. Анализ и оценка проектных рисков
  10. Анализ и оценка реальных возможностей восстановления платежеспособности предприятия
  11. Анализ и оценка финансового состояния торговой организации
  12. Анализ равновесия между активами предприятия и источниками их формирования. Оценка финансовой устойчивости предприятия

Показатели корреляционной связи, вычисленные по ограниченной совокупности (по выборке), являются лишь оценками той или иной статистической закономерности, поскольку в любом параметре сохраняется элемент не полностью погасившейся случайности, присущей индивидуальным значениям признаков. Поэтому необходима статистическая оценка степени точности и надежности параметров корреляции. Под надежностью здесь понимается вероятность того, что значение проверяемого параметра не равно нулю, не включает в себя величины противоположных знаков.

Вероятностная оценка параметров корреляции проводится по общим правилам проверки статистических гипотез, разработанным математической статистикой, в частности путем сравнения оцениваемой величины со средней случайной ошибкой оценки. Для коэффициента парной регрессии b средняя ошибка оценки вычисляется как:

мости 0,05) 0,3494, то полученное значение ниже критического по модулю. Соответственно гипотеза о связи признаков надежно не доказана. Неверен будет вывод и об отсутствии связи — он также надежно не доказан. Из табл. П.5 приложения видно, что при малой выборке надежно можно установить только тесные связи, а при большой численности совокупности, например 102 единицы, надежно измеряются и слабые связи. Этот вывод важен для практической работы по корреляционному анализу.

Можно рассчитать доверительный интервал оценки коэффициента корреляции с заданной вероятностью, скажем 0,95. При этих условиях и 13 степенях свободы вариации значение /-критерия Стыодента равно 2,16. Тогда доверительный интервал для z составит: 1,564 ± 2,16-0,2774, т.е. от 0,965 до 2,163. Подставив эти граничные значения г в формулу (9.21), получаем границы интервала значений коэффициента корреляции: от 0,747 до 0,974. Как видим, с большой вероятностью связь на самом деле является весьма тесной, коэффициент корреляции не ниже 0,7.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.)