|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Тема: Система одновременных уравнений. 1. Применение косвенного метода наименьших квадратовСодержание занятия. 1. Применение косвенного метода наименьших квадратов. 2. Применение ДМНК к простейшей сверхидентифицируемой модели. Литература: [1] стр200-204,[2] стр113-115, [8] стр30-341
Задание Пусть для построения данной модели мы располагаем некоторой информацией по 5 регионам:
Построить структурную эконометрическую модель, применив косвенный метод наименьших квадратов и двухшаговый метод наименьших квадратов. Методические указания по выполнению задания: Приведенная форма модели составит: Для каждого уравнения приведенной формы модели применяем традиционный МНК и определяем -коэффициенты. Чтобы упростить процедуру расчетов, можно работать с отклонениями от средних уровней, т.е. . Тогда для первого уравнения приведенной формы модели система нормальных уравнений составит:
Применительно к рассматриваемому примеру, используя отклонения от средних уровней, имеем: . Решая данную систему, получим следующее первое уравнение приведенной формы модели: у1=0,852х1+0,373х2 Аналогично применяем МНК для второго уравнения приведенной формы модели. Система нормальных уравнений составит: Применительно к нашему примеру имеем: Откуда второе уравнение приведенное уравнение составит: у2=-0,072х1-0,00557х2 Таким образом, приведенная форма модели имеет вид: Переходим от приведенной формы к структурной форме модели, т.е. к системе уравнений: Для этой цели из первого уравнения приведенной формы модели надо исключить х2 выразив его из второго уравнения приведенной формы и подставив в первое: . Тогда - первое уравнение структурной модели. Чтобы найти второе уравнение структурной модели обратимся вновь к приведенной форме модели. Из второго уравнения приведенной формы модели следует исключить х1, выразив его через первое уравнение и подставив во второе: и . - второе уравнение структурной модели. Итак, структурная форма модели имеет вид: Применим двухшаговый метод наименьших квадратов к простейшей сверхидентифицируемой модели: . Используем те же исходные данные, поэтому получим ту же систему приведенных уравнений: На основе второго уравнения данной системы найдем теоретические значения для эндогенной переменной , т.е. . С это целью во второе уравнение подставляем значения и . Расчетные данные для второго шага ДМНК.
Заменяя фактические значения их оценками , найдем значения новой переменной + = z. Далее применяем МНК к уравнению е.е. . Откуда . Таким образом, сверхидентифицируемое структурное уравнение составит . Ввиду того, что второе уравнение системы не изменилось, то его структурная форма, найденная из системы приведенных уравнений та же: . В целом рассматриваемая система одновременных уравнений составит:
8. Материалы для самостоятельной работы обучающегося: Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |