АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

TEXT B: AGRARIAN REFORM IN THE WORLD AND UKRAINE: ACHIEVEMENTS AND MISCALCULATIONS

Читайте также:
  1. e.g. The Appellate Committee of the House of Lords was independent, effective, inexpensive and was regarded as one of the finest courts in the world.
  2. How can emerging economies protect themselves from the rich world’s monetary policy?
  3. TEXT B: WORLD AGRICULTURE
  4. THE ORIGIN AND POSITION OF ENGLISH LAMONG OTHER LANGUAGES OF THE WORLD

Words and words combinations:

 

encompasses – оточувати

partitioned – розділений

proponents – відомий

pharmaceuticals - лікувальні засоби

decoupling – розчеплення

backlash - люфт, «мертвий хід»

dehydration – дегідратація

altered - удосконалений автомобіль

alarming - сигнал тривоги

 

TEXT B: AGRARIAN REFORM IN THE WORLD AND UKRAINE: ACHIEVEMENTS AND MISCALCULATIONS

Agriculture refers to the production of goods through the growing of plants, animals and other life forms. The study of agriculture is known as agricultural science.

Agriculture encompasses many subjects, including aquaculture, agronomy, animal husbandry, and horticulture. Each of these subjects can be further partitioned: for example, agronomy includes both sustainable agriculture and intensive farming, and animal husbandry includes ranching, herding, and intensive pig farming. Agricultural products include food (vegetables, fruits, and cereals), fibers (cotton, wool, hemp, silk and flax), fuels (methane from biomass, ethanol, biodiesel), cut flowers, ornamental and nursery plants, tropical fish and birds for the pet trade, both legal and illegal drugs (biopharmaceuticals, tobacco, marijuana, opium, cocaine), and other useful materials such as resins. Recently, crops have been designed to produce plastic as well as pharmaceuticals.

Many governments have subsidized agriculture to ensure an adequate food supply. These agricultural subsidies are often linked to the production of certain commodities such as wheat, corn, rice, soybeans, and milk. These subsidies, especially when done by developed countries have been noted as protectionist, inefficient, and environmentally damaging. In the past century agriculture has been characterized by enhanced productivity, the use of synthetic fertilizers and pesticides, selective breeding, mechanization, water contamination, and farm subsidies. Proponents of organic farming such as Sir Albert Howard argued in the early 1900s that the overuse of pesticides and synthetic fertilizers damages the long-term fertility of the soil. While this feeling lay dormant for decades, as environmental awareness has increased recently there has been a movement towards sustainable agriculture by some farmers, consumers, and policymakers. In recent years there has been a backlash against perceived external environmental effects of mainstream agriculture, particularly regarding water pollution, resulting in the organic movement. One of the major forces behind this movement has been the European Union, which first certified organic food in 1991 and began reform of its Common Agricultural Policy (CAP) in 2005 to phase out commodity-linked farm subsidies, also known as decoupling. The growth of organic farming has renewed research in alternative technologies such as integrated pest management and selective breeding. Recent mainstream technological developments include genetically modified food.

As of late 2007, several factors have pushed up the price of grain used to feed poultry and dairy cows and other cattle, causing higher prices of wheat (up 58%), soybean (up 32%), and maize (up 11%) over the year. Food riots has recently taken place in many countries across the world. An epidemic of stem rust on wheat caused by race UG99 is currently spreading across Africa and into Asia and is causing major concern. Approximately 40% of the world's agricultural land is seriously degraded. In Africa, if current trends of soil degradation continue the continent might be able to feed just 25% of its population by 2025, according to UNU's Ghana-based Institute for Natural Resources in Africa.

Agricultural practices lie on a spectrum dependent upon the intensity and technology of the methods. At the one end lies the subsistence farmer who farms a small area with limited inputs and produces only enough food to meet the needs of his or her family. At the other end lies intensive agriculture which includes traditional labor intensive farming (e.g. South-East Asia rice paddies), and modern agriculture which includes industrial agriculture, organic farming and sustainable farming. Industrial agriculture involves large fields and/or numbers of animals, high resource inputs (pesticides, fertilizers, etc.), and a high level of mechanization. These operations achieve economies of scale and require large amounts of capital in the form of land and machinery.

The twentieth century saw changes in agricultural practice, particularly in agricultural chemistry and in mechanization. Agricultural chemistry includes the application of chemical fertilizer, chemical insecticides (see pest control), and chemical fungicides, analysis of soil makeup and nutritional needs of farm animals.

Mechanization has increased farm efficiency and productivity in most regions of the world, due especially to the tractor and various "gins" (short for "engine") such as the cotton gin, semi-automatic balers and threshers and, above all, the combine (see agricultural machinery). According to the National Academy of Engineering in the United States, agricultural mechanization is one of the 20 greatest engineering achievements of the 20th century. Early in the century, it took one American farmer to produce food for 2.5 people. By 1999, due to advances in agricultural technology, a single farmer could feed over 130 people.

Other recent changes in agriculture include hydroponics, plant breeding, hybridization, gene manipulation, better management of soil nutrients, and improved weed control. Genetic engineering has yielded crops which have capabilities beyond those of naturally occurring plants, such as higher yields and disease resistance. Modified seeds germinate faster, and thus can be grown on an accelerated schedule. Genetic engineering of plants has proven controversial, particularly in the case of herbicide-resistant plants.

It has been suggested that genetic engineers may someday develop transgenic plants which would allow for irrigation, drainage, conservation, sanitary engineering, and maintaining or increasing yields while requiring fewer fossil fuel derived inputs than conventional crops. Such developments would be particularly important in areas which are normally arid and rely upon constant irrigation, and on large scale farms. These possibilities are questioned by ecologists and economists concerned with unsustainable GMO practices such as terminator seeds, and a January 2008 report shows that GMO practices have failed to address sustainability issues. While there has been some research on sustainability using GMO crops, at least one hyped and prominent multi-year attempt by Monsanto has been unsuccessful; though during the same period traditional breeding techniques yielded a more sustainable variety of the same crop. Additionally, a survey by the bio-tech industry of subsistence farmers in Africa to discover what GMO research would most benefit sustainable agriculture only identified non-transgenic issues as areas needing to be addressed.

The processing, packing and marketing of agricultural products are closely related activities also influenced by science. Methods of quick-freezing and dehydration have increased the markets for many farm products (see food preservation and meat packing industry).

Animals, including horses, mules, oxen, camels, llamas, alpacas, and dogs, are often used to help cultivate fields, harvest crops, wrangle other animals, and transport farm products to buyers. Animal husbandry not only refers to the breeding and raising of animals for meat or to harvest animal products (like milk, eggs, or wool) on a continual basis, but also to the breeding and care of species for work and companionship.

Airplanes, helicopters, trucks, tractors, and combines are used in Western (and, increasingly, Eastern) agriculture for seeding, spraying operations for insect and disease control, harvesting, aerial topdressing and transporting perishable products. Radio and television disseminate vital weather reports and other information such as market reports that concern farmers. Computers have become an essential tool for farm management.

In recent years, some aspects of intensive industrial agriculture have been the subject of increasing debate. The widening sphere of influence held by large seed and chemical companies, meat packers and food processors has been a source of concern both within the farming community and for the general public. Another issue is the type of feed given to some animals that can cause bovine spongiform encephalopathy in cattle. There has also been concern over the effect of intensive agriculture on the environment.

The patent protection given to companies that develop new types of seed using genetic engineering has allowed seed to be licensed to farmers in much the same way that computer software is licensed to users. This has changed the balance of power in favor of the seed companies, allowing them to dictate terms and conditions previously unheard of.

Soil conservation and nutrient management have been important concerns since the 1950s, with the most advanced farmers taking a stewardship role with the land they use. However, increasing contamination of waterways and wetlands by nutrients like nitrogen and phosphorus are concerns that can only be addressed by "enlightenment" of farmers and/or far stricter law enforcement in many countries.

Increasing consumer awareness of agricultural issues has led to the rise of community-supported agriculture, local food movement, "Slow Food", and commercial organic farming.

Agriculture was developed at least 10,000 years ago, and it has undergone significant developments since the time of the earliest cultivation. Evidence points to the Fertile Crescent of the Middle East as the site of the earliest planned sowing and harvesting of plants that had previously been gathered in the wild. Independent development of agriculture occurred in northern and southern China, Africa's Sahel, New Guinea and several regions of the Americas. Agricultural practices such as irrigation, crop rotation, fertilizers, and pesticides were developed long ago but have made great strides in the past century. The Haber-Bosch method for synthesizing ammonium nitrate represented a major breakthrough and allowed crop yields to overcome previous constraints. In the past century agriculture has been characterized by enhanced productivity, the substitution of labor for synthetic fertilizers and pesticides, selective breeding, mechanization, water pollution, and farm subsidies. In recent years there has been a backlash against the external environmental effects of conventional agriculture, resulting in the organic movement.

Developed independently by geographically distant populations, systematic agriculture first appeared in Southwest Asia in the Fertile Crescent, particularly in modern-day Iraq and Syria/Israel. Around 9500 BCE, proto-farmers began to select and cultivate food plants with desired characteristics. Though there is evidence of earlier sporadic use of wild cereals, it was not until after 9500 BCE that the eight so-called founder crops of agriculture appear: first emmer and einkorn wheat, then hulled barley, peas, lentils, bitter vetch, chick peas and flax.

The farming practices of livestock vary dramatically world-wide and between different types of animals. Livestock are generally kept in an enclosure, are fed by human-provided food and are intentionally bred, but some livestock are not enclosed, or are fed by access to natural foods, or are allowed to breed freely, or all three. Approximately 68% of all agricultural land is used in the production of livestock as permanent pastures.

Genetic erosion in crops and livestock biodiversity is propelled by several major factors such as variety replacement, land clearing, overexploitation of species, population pressure, environmental degradation, overgrazing, policy and changing agricultural systems.

The main factor, however, is the replacement of local varieties of domestic plants and animals by high yielding or exotic varieties or species. A large number of varieties can also often be dramatically reduced when commercial varieties (including GMOs) are introduced into traditional farming systems. Many researchers believe that the main problem related to agro-ecosystem management is the general tendency towards genetic and ecological uniformity imposed by the development of modern agriculture.

In agriculture and animal husbandry, the green revolution popularized the use of conventional hybridization to increase yield many folds by creating "high-yielding varieties". Often the handful of breeds of plants and animals hybridized originated in developed countries and were further hybridized with local varieties in the rest of the developing world to create high yield strains resistant to local climate and diseases. Hybridization of local breeds to improve performance may lead to the loss of the local breed over time and consequently the loss of the genetic material that adapted that breed specifically to the local conditions. When viewed across the world as a whole, the consequent loss in genetic diversity and biodiversity could be placing the food supply in jeopardy, as a highly specialized breed may not contain sufficient genetic material to adapt to new diseases or environments even with an intensive breeding program.

A Genetically Modified Organism (GMO) is an organism whose genetic material has been altered using the genetic engineering techniques generally known as recombinant DNA technology. Genetic Engineering today has become another serious and alarming cause of genetic pollution because artificially created and genetically engineered plants and animals in laboratories, which could never have evolved in nature even with conventional hybridization, can live and breed on their own and what is even more alarming interbreed with naturally evolved wild varieties. Genetically Modified (GM) crops today have become a common source for genetic pollution, not only of wild varieties but also of other domesticated varieties derived from relatively natural hybridization.

Mechanized agriculture is the process of using agricultural machinery to massively increase farm output. In modern times, powered machinery has replaced many jobs formerly carried out by men or animals such as oxen and horses.

The first pervasive mechanization of agriculture came with the introduction of the plough, usually powered by animals. It was invented in ancient Mesopotamia.

Current mechanized agriculture includes the use of airplanes, helicopters, trucks and tractors, among other vehicles. Modern farms even sometimes use computers in conjunction with satellite imagery and GPS guidance to increase yields. The need for mechanization is as a result of the global population increase which must be fed. It improves the production efficiency by reducing cost per unit of product, encourages large scale production and improves the quality of farm produce. On the other hand, it displaces unskilled farm labor, causes environmental pollution, deforestation and erosion.

Economic security is one of the main components of the national security of Ukraine. Reliable provision of the nation with agricultural produce and utilization of the entire export potential of the agro-industrial complex are important tasks of national significance. Therein lays the reason for the special, indeed, strategic importance of agrarian reform in the overall process of reforming the national economy.

Ukraine has a strong agricultural potential. Its land reserves cover 42 million hectares of arable land, most of them — fertile black soil. However, only one third of this potential is actually put to good use.

This is a consequence of both the systemic economic crisis in the country and the extremely slow and contradictory process of reform in the agro-industrial complex. Even the positive signs that appeared in 2000 failed to seriously improve this critical state: the basic economic indicators are still lower than in 1990; social problems are aggravated — unemployment is on the rise, the standard of living of villagers is close to a critical line; efficient owners have not been formed — in their status at new enterprises, Ukrainian peasants differ little from former collective farm members.

Agrarian reform is an element of a wider process of deep socio-economic and political transformation of Ukrainian society, which has objectively created contradictory trends in its course. The strategic prospects of agrarian reform depend on which trends — positive or negative — will come out on top in the end, with account of the effects of many external factors.

 

I. Answer the following questions:

1. What are the main functions of new achievements in the world?

2. What is the result of new achievements?

3. How new achievements are developed in Ukrainian agriculture?

4. What appropriate authority is preventing the spread of new achievements?

II. Put as many questions to the sentences as possible:

1. The processing, packing and marketing of agricultural products are closely related activities also influenced by science.

2. Economic security is one of the main components of the national security of Ukraine.

3. Soil conservation and nutrient management have been important concerns. 4. In recent years, some aspects of intensive industrial agriculture have been the subject of increasing debate.

III. Complete the sentences:

1. In agriculture and animal husbandry, the green revolution popularized the use of …..

2. Current mechanized agriculture includes the use of ….

3. Animal husbandry not only refers to the breeding and rising of animals for meat or to harvest animal products (like milk, eggs, or wool) on a continual basis, but ….

4. Agricultural chemistry includes the application of chemical fertilizer, chemical insecticides (see pest control), and …….

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.)