АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ЕСТЕСТВОЗНАНИЕ В МИРЕ ДУХОВ 3 страница

Читайте также:
  1. IX. Карашар — Джунгария 1 страница
  2. IX. Карашар — Джунгария 2 страница
  3. IX. Карашар — Джунгария 3 страница
  4. IX. Карашар — Джунгария 4 страница
  5. IX. Карашар — Джунгария 5 страница
  6. IX. Карашар — Джунгария 6 страница
  7. IX. Карашар — Джунгария 7 страница
  8. IX. Карашар — Джунгария 8 страница
  9. IX. Карашар — Джунгария 9 страница
  10. Августа 1981 года 1 страница
  11. Августа 1981 года 2 страница
  12. Августа 1981 года 3 страница

_________________________ «ДИАЛЕКТИКА ПРИРОДЫ». СТАТЬИ И ГЛАВЫ_____________________ 398

теплоты от трения отдельным колесикам часового механизма. Но не движение падения, как обыкновенно выражаются, т. е. не притяжение, перешло в теплоту, т. е. некоторую форму отталкивания. Напротив, притяжение, тяжесть, остается, как правильно замечает Гельм-гольц, тем же, чем оно было раньше, и даже, выражаясь точно, становится больше. Не при­тяжение, а отталкивание, сообщенное поднятому кверху телу посредством поднимания его, — вот что механически уничтожается падением и что снова воскресает в форме теплоты. От­талкивание масс превратилось в молекулярное отталкивание.

Теплота представляет собой, как мы уже сказали, некоторую форму отталкивания. Она приводит молекулы твердых тел в колебание и этим ослабляет связь отдельных молекул, по­ка, наконец, не наступает переход в жидкое состояние; при продолжении притока теплоты она и в этом состоянии увеличивает движение молекул до тех пор, пока они совершенно не оторвутся от массы и не начнут свободно двигаться поодиночке с определенной, обуслов­ленной для каждой молекулы ее химическим составом скоростью. При продолжающемся да­лее притоке теплоты она увеличивает еще более и эту скорость, отталкивая, таким образом, молекулы все дальше друг от друга.

Но теплота есть одна из форм так называемой «энергии»; последняя и здесь оказывается опять-таки тождественной с отталкиванием.

В явлениях статического электричества и магнетизма мы имеем полярное распределение притяжения и отталкивания. Какой бы гипотезы ни придерживаться насчет modus operand! обеих этих форм движения, ни один человек, считающийся с фактами, не усомнится в том, что притяжение и отталкивание, поскольку они вызваны статическим электричеством или магнетизмом и поскольку они могут беспрепятственно проявлять себя, вполне компенсиру­ют друг друга, что впрочем с необходимостью следует уже из самой природы полярного распределения. Такие два полюса, действия которых не вполне компенсировали бы друг дру­га, не были бы вовсе полюсами; да они никогда до сих пор и не встречались в природе. Яв­ления гальванизма мы оставим пока в покое, ибо здесь процесс обусловливается химически­ми явлениями, становясь благодаря этому более сложным. Обратимся поэтому лучше к изу­чению самих химических процессов движения.

Когда две весовые части водорода соединяются с 15,96 весовой части кислорода, образуя водяной пар, то во время этого

— способа действия. Ред.


ОСНОВНЫЕ ФОРМЫ ДВИЖЕНИЯ__________________________ 399

процесса развивается количество теплоты, равное 68,924 единицы теплоты. Наоборот, если нужно разложить 17,96 весовой части водяного пара на две весовые части водорода и 15,96 весовой части кислорода, то это возможно лишь при том. условии, что водяному пару сооб­щается движение в количестве, эквивалентном 68,924 единицы теплоты, — будет ли это в форме самой теплоты или же в форме электрического движения. То же самое справедливо и относительно всех других химических процессов. В огромном большинстве случаев при хи­мических соединениях движение выделяется, при разложениях же приходится привносить движение извне. И здесь отталкивание представляет собой, как правило, активную сторону процесса, более наделенную движением или требующую привнесения движения, а притяже­ние — пассивную сторону процесса, связанную с образованием избытка движения и выде­ляющую его. Поэтому современная теория и заявляет опять-таки, что в общем и целом при соединении элементов энергия высвобождается, при разложении же химических соединений — связывается. Термин «энергия», стало быть, здесь опять-таки употребляется для обозна­чения отталкивания. И опять-таки Гельмгольц заявляет:

«Эту силу» (силу химического сродства) «мы можем представить себе как силу притяжения... Эта сила притяжения между атомами углерода и кислорода производит работу точно так же, как и та сила, которая в форме тяжести проявляется Землей в отношении поднятой вверх гири... Когда атомы углерода и кислорода устремляются друг к другу и соединяются в углекислоту, то новообразовавшиеся частицы углекислоты должны находиться в крайне бурном молекулярном движении, т. е. в тепловом движении... Когда в дальнейшем углеки­слота отдаст свою теплоту окружающей среде, то мы все еще имеем в углекислоте весь углерод, весь кислород, а также силу сродства обоих, столь же деятельную, как и раньше. Но эта сила сродства обнаруживается теперь лишь в том, что она крепко связывает между собой атомы углерода и кислорода, не допуская их разделения» (цит. соч., стр. 169).

Мы здесь видим совершенно то же самое, что и раньше: Гельмгольц настаивает на том, что в химии, как и в механике, сила заключается только в притяжении и, следовательно, яв­ляется прямой противоположностью того, что у других физиков называется энергией и что тождественно с отталкиванием.

Таким образом, мы имеем теперь уже не две простые основные формы притяжения и от­талкивания, а целый ряд подчиненных форм, в которых совершается процесс универсального движения, развертываясь и свертываясь в рамках противоположности притяжения и оттал­кивания. Но когда мы подводим эти многообразные формы явлений под одно общее назва­ние


_________________________ «ДИАЛЕКТИКА ПРИРОДЫ». СТАТЬИ И ГЛАВЫ_____________________ 400

движения, то дело тут отнюдь не в том только, что наш рассудок объединяет их вместе. На­против, эти формы сами доказывают своим действием, что они являются формами одного и того же движения, ибо при известных обстоятельствах они переходят друг в друга. Механи­ческое движение масс переходит в теплоту, в электричество, в магнетизм; теплота и элек­тричество переходят в химическое разложение; со своей стороны, процесс химического со­единения порождает опять-таки теплоту и электричество, а через посредство последнего — магнетизм; и, наконец, теплота и электричество в свою очередь производят механическое движение масс. И происходит это таким образом, что определенному количеству движения одной формы всегда соответствует точно определенное количество движения другой формы, причем опять-таки безразлично, из какой формы движения заимствована та единица-мера, которой измеряется это количество движения [Bewegungsmenge], т. е. служит ли она для из­мерения движения масс, для измерения теплоты, так называемой электродвижущей силы или же превращенного при химических процессах движения.

Здесь мы стоим на почве теории «сохранения энергии», созданной Ю. Р. Майером в 1842 г. и разработанной с тех пор с таким блестящим успехом учеными всех стран, и нам теперь надлежит подвергнуть исследованию основные представления, которыми ныне опе­рирует эта теория. Это — представления о «силе», или «энергии», и о «работе».

Мы уже видели выше, что новое, теперь почти общепринятое воззрение понимает под энергией отталкивание, между тем как Гельмгольц употребляет слово «сила» преимущест­венно для обозначения притяжения. В этом можно было бы видеть какое-то формальное, не­существенное различие, так как ведь притяже-

В «Популярных докладах», вып. II, стр. 113, Гельмгольц приписывает, по-видимому, кроме Майера, Джо­уля и Кольдинга, и себе самому известную роль в естественнонаучном доказательстве положения Декарта о количественной неизменности движения. «Сам я, не зная ничего о Майере и Кольдинге и ознакомившись с опытами Джоуля лишь в конце своей работы, вступил на тот же самый путь: я старался проследить все те отношения между различными процессами природы, которых надо было ожидать, исходя из указанной точки зрения, и опубликовал свои исследования в 1847 г. в маленьком сочинении под названием: «О сохранении си­лы»»307. — Но в этом сочинении не находится ровно ничего нового для уровня науки в 1847 г., за исключением упомянутого выше математического — впрочем, весьма ценного — доказательства, что «сохранение силы» и центральное действие сил, действующих между различными телами какой-нибудь системы, являются лишь двумя различными выражениями одной и той же вещи, и, далее, более точной формулировки закона, что сумма живых сил и сил напряжения в некоторой данной механической системе постоянна. Во всем остальном это со­чинение Гельмгольца было уже превзойдено второй работой Майера от 1845 года. Уже в 1842 г. Майер утвер­ждал «неуничтожимость силы», а в 1845 г. он, исходя из своей новой точки зрения, сумел сообщить гораздо более гениальные вещи об «отношениях между различными процессами природы», чем Гельмгольц в 1847 го-ду308.


ОСНОВНЫЕ ФОРМЫ ДВИЖЕНИЯ__________________________ 401

ние и отталкивание компенсируют друг друга во вселенной и поэтому безразлично, какую сторону отношения принять за положительную и какую — за отрицательную, подобно тому как само по себе совершенно безразлично, будем ли мы отсчитывать на известной прямой от какой-нибудь точки положительные абсциссы направо или налево. Но в действительности это не совсем так.

Дело в том, что у нас речь идет здесь прежде всего не о вселенной, а о явлениях, совер­шающихся на Земле и обусловленных вполне определенным положением Земли в солнечной системе и солнечной системы во вселенной. Но наша солнечная система в каждое мгновение отдает в мировое пространство колоссальные количества движения, и притом движения вполне определенного качества, именно солнечную теплоту, т. е. отталкивание. А сама наша Земля оживлена только благодаря солнечной теплоте и, со своей стороны, излучает получен­ную солнечную теплоту, — после того как она превратила часть ее в другие формы движе­ния, — в конце концов тоже в мировое пространство. Таким образом, в солнечной системе, и в особенности на Земле, притяжение получило уже значительный перевес над отталкивани­ем. Без излучаемого Солнцем движения отталкивания на Земле прекратилось бы всякое дви­жение. Если бы завтра Солнце охладилось, то при прочих равных условиях притяжение ос­талось бы на Земле тем же, каким оно является в настоящее время. Камень весом в сто кило­граммов продолжал бы по-прежнему весить эти сто килограммов на том месте, где он лежит. Но зато движение, как масс, так и молекул и атомов, пришло бы в состояние абсолютного, согласно нашим представлениям, покоя. Таким образом, ясно, что для процессов, совер­шающихся на нашей нынешней Земле, совершенно не безразлично, станем ли мы рассматри­вать притяжение или отталкивание как активную сторону движения, т. е. как «силу», или «энергию». На нынешней Земле, наоборот, притяжение благодаря своему решительному пе­ревесу над отталкиванием стало уже совершенно пассивным: всем активным движением мы обязаны притоку отталкивания, идущему от Солнца. Поэтому-то новейшая школа — хотя ей и остается неясной природа отношения движения [des Bewegungsverhaltnisses] — все же по существу вполне права с точки зрения земных процессов и даже с точки зрения всей солнеч­ной системы, когда она рассматривает энергию как отталкивание.

Правда, термин «энергия» отнюдь не дает правильного выражения всему отношению движения, ибо он охватывает только одну сторону его — действие, но не противодействие.


_________________________ «ДИАЛЕКТИКА ПРИРОДЫ». СТАТЬИ И ГЛАВЫ_____________________ 402

Кроме того, он допускает видимость того, будто «энергия» есть нечто внешнее для материи, нечто привнесенное в нее. Но во всяком случае этот термин заслуживает предпочтения перед выражением «сила».

Представление о силе заимствовано, как это признается всеми (начиная от Гегеля и кон­чая Гельмгольцем), из проявлений деятельности человеческого организма по отношению к окружающей его среде. Мы говорим о мускульной силе, о поднимающей силе рук, о прыга-тельной силе ног, о пищеварительной силе желудка и кишечного тракта, об ощущающей си­ле нервов, о секреторной силе желез и т. д. Иными словами, чтобы избавиться от необходи­мости указать действительную причину изменения, вызванного какой-нибудь функцией на­шего организма, мы подсовываем некоторую фиктивную причину, некоторую так называе­мую силу, соответствующую этому изменению. Мы переносим затем этот удобный метод также и на внешний мир и, таким образом, сочиняем столько же сил, сколько существует различных явлений.

Естествознание (за исключением разве небесной и земной механики) находилось на этой наивной ступени развития еще и во времена Гегеля, который с полным правом обрушивается против тогдашней манеры придумывать повсюду силы (процитировать соответствующее ме-

\309 гр

сто)309. Точно так же он замечает в другом месте:

«Лучше сказать, что магнит» (как выражается Фалес) «имеет душу, чем говорить, что он имеет силу притя­гивать: сила — это такое свойство, которое, как отделимое от материи, мы представляем себе в виде предика­та; душа, напротив, есть это движение самого себя, одно и то. же с природой материи» («История филосо­фии», т. I, стр. 208)310.

Теперь мы уже не так легко оперируем силами, как в те времена. Послушаем Гельмголь-ца:

«Когда мы вполне знаем какой-нибудь закон природы, то мы должны и требовать от него, чтобы он дейст­вовал без исключений... Таким образом, закон представляется нам в виде некоторой объективной мощи, и по­этому мы называем его силой. Так, например, мы объективируем закон преломления света как некоторую, при­сущую прозрачным веществам, силу преломления света, закон химического избирательного сродства — как силу сродства между собою различных веществ. Точно так же мы говорим об электрической контактной силе металлов, о силе прилипания, капиллярной силе и т. д. В этих названиях объективированы законы, охватываю­щие на первых порах лишь небольшие ряды процессов природы, условия которых еще довольно запутаны*... Сила — это только объективированный закон действия... Вводимое нами абстрактное понятие силы прибавляет к этому еще лишь мысль о том, что мы не сочинили произ-

Подчеркнуто Энгельсом. Ред.


ОСНОВНЫЕ ФОРМЫ ДВИЖЕНИЯ__________________________ 403

вольно этого закона, что он представляет собой принудительный закон явлений. Таким образом, наше требова­ние понять явления природы, т. е. найти их законы, принимает иную форму выражения, сводясь к требованию отыскивать силы, представляющие собой причины явлений» (пит. соч., стр. 189—191. Доклад на Инсбрукском съезде естествоиспытателей в 1869 г.).

Заметим прежде всего, что это во всяком случае очень своеобразный способ «объективи­рования», когда в некоторый, — уже установленный как независимый от нашей субъектив­ности и, следовательно, уже вполне объективный, — закон природы вносят чисто субъек­тивное представление о силе. Подобную вещь мог бы позволить себе в лучшем случае ка­кой-нибудь правовернейший старогегельянец, а не неокантианец вроде Гельмгольца. К од­нажды установленному закону и к его объективности или к объективности его действия не прибавляется ни малейшей новой объективности оттого, что мы подставим под него некото­рую силу; здесь присоединяется лишь наше субъективное утверждение, что этот закон дей­ствует при помощи некоторой, пока еще совершенно неизвестной силы. Но тайный смысл этой подстановки открывается перед нами тогда, когда Гельмгольц начинает приводить свои примеры: преломление света, химическое сродство, контактное электричество, прилипание, капиллярность, и возводит законы, управляющие этими явлениями, в «объективное» благо­родное сословие сил. «В этих названиях объективированы законы, охватывающие на первых порах лишь небольшие ряды процессов природы, условия которых еще довольно запутаны». И именно здесь «объективирование», являющееся скорее субъективированием, приобретает известный смысл: мы ищем иной раз прибежища в слове «сила» не потому, что мы вполне познали закон, но именно потому, что мы его не познали, потому, что мы еще не выяснили себе «довольно запутанных условий» этих явлений. Таким образом, прибегая к понятию си­лы, мы этим выражаем не наше знание, а недостаточность нашего знания о природе закона и о способе его действия. В этом смысле, в виде краткого выражения еще не познанной при­чинной связи, в виде уловки языка, слово «сила» может допускаться в повседневном обихо­де. Что сверх того, то от лукавого. С тем же правом, с каким Гельмгольц объясняет физиче­ские явления из так называемой силы преломления света, электрической контактной силы и т. д., средневековые схоластики объясняли температурные изменения из vis calorifica* и vis frigifaciens**, избавляя себя тем

— теплотворной силы. Ред. * — охлаждающей силы. Ред.


_________________________ «ДИАЛЕКТИКА ПРИРОДЫ». СТАТЬИ И ГЛАВЫ_____________________ 404

самым от необходимости всякого дальнейшего изучения явлений теплоты.

Но и в вышеуказанном смысле термин «сила» неудачен. А именно, он выражает все явле­ния односторонним образом. Все процессы природы двусторонни: они основываются на от­ношении между, по меньшей мере, двумя действующими частями, на действии и противо­действии. Между тем представление о силе, благодаря своему происхождению из действия человеческого организма на внешний мир и, далее, из земной механики, предполагает мысль о том, что только одна часть — актив-пая, действенная, другая же — пассивная, восприни­мающая, и таким образом устанавливает пока что недоказуемое распространение полового различия на неживую природу. Противодействие второй части, на которую действует сила, выступает здесь в лучшем случае как какое-то пассивное противодействие, как некоторое сопротивление. Правда, эта концепция допустима в делом ряде областей и помимо чистой механики, а именно там, где дело идет о простом перенесении движения и количественном вычислении его. Но ее уже недостаточно в более сложных физических процессах, как это доказывают собственные примеры Гельмгольца. Сила преломления света заключается столько же в самом свете, сколько в прозрачных телах. В случае явлений прилипания и ка­пиллярности «сила» заключается безусловно столько же в твердой поверхности, сколько в жидкости. Относительно контактного электричества одно во всяком случае несомненно: а именно то, что здесь играют роль оба металла; а «сила химического сродства», если и нахо­дится где-либо, то во всяком случае в обеих соединяющихся частях. Но сила, состоящая из двух раздельных сил, действие, не вызывающее своего противодействия, а заключающее и несущее его в себе самом, — не есть вовсе сила в смысле земной механики, этой единствен­ной науки, в которой действительно знают, что означает слово «сила». Ведь основными ус­ловиями земной механики являются, во-первых, отказ исследовать причины толчка, т. е. природу соответственной в каждом случае силы, а во-вторых, представление об односторон­ности силы, которой противопоставляется некоторая в любом месте всегда себе равная тя­жесть таким образом, что, по сравнению с любым расстоянием, проходимым падающим на Земле телом, радиус земного шара считается равным бесконечности.

Но пойдем дальше и посмотрим, как Гельмгольц «объективирует» свои «силы» в законы природы.

В одной лекции 1854 г. (цит. соч., стр. 119) он исследует тот «запас силы, способной про­изводить работу», который перво-


ОСНОВНЫЕ ФОРМЫ ДВИЖЕНИЯ__________________________ 405

начально содержала в себе шарообразная туманность, давшая начало нашей солнечной сис­теме.

«Действительно, эта туманность получила колоссальный запас способности производить работу уже в фор­ме всеобщей силы притяжения всех ее частей друг к другу».

Это бесспорно. Но столь же бесспорно и то, что весь этот запас тяжести, или тяготения, сохраняется в неущербленном виде и в теперешней солнечной системе, за исключением раз­ве незначительной части его, утерянной с материей, которая, быть может, была выброшена безвозвратным образом в мировое пространство. Далее:

«И химические силы должны были уже быть налицо, готовые к действию; но так как эти силы могут стать действенными лишь при самом тесном соприкосновении разнородных масс, то, прежде чем началось их дейст­вие, должно было произойти сгущение» [стр. 120].

Если мы вместе с Гельмгольцем (см. выше) станем рассматривать эти химические силы как силы сродства, т. е. как притяжение, то мы должны будем и здесь сказать, что совокуп­ная сумма этих сил химического притяжения сохраняется неуменьшенной и в теперешней солнечной системе.

Но на той же самой странице Гельмгольц приводит в качестве результата своих выкладок, что

в солнечной системе «теперь имеется примерно лишь 1Цъа доля первоначальной механической силы как та­ковой».

Как согласовать это? Ведь сила притяжения — как всеобщая, так и химическая — сохра­нилась в солнечной системе в нетронутом виде. Другого определенного источника силы Гельмгольц не указывает. Правда, согласно Гельмгольцу, указанные им силы произвели ко­лоссальную работу. Но от этого они ни увеличились, ни уменьшились. О каждой молекуле в солнечной системе, как и обо всей солнечной системе, можно сказать то же самое, что о ча­совой гире в вышеприведенном примере: «Ее тяжесть не пропала и не уменьшилась». Со всеми химическими элементами происходит то же самое, что сказано выше об углероде и кислороде: вся данная нам масса каждого элемента по-прежнему сохраняется, и точно так же «остается столь же деятельной, как и раньше, вся сила сродства». Что же мы потеряли? И какая «сила» произвела колоссальную работу, которая в 453 раза больше, чем та, которую еще может произвести, по его вычислению, солнечная система? В цитированных местах мы не имеем у Гельмгольца никакого ответа на это. Но дальше он говорит:


_________________________ «ДИАЛЕКТИКА ПРИРОДЫ». СТАТЬИ И ГЛАВЫ_____________________ 406

«Мы не знаем, имелся ли [в первоначальной туманности] еще дальнейший запас силы в виде теплоты» [стр. 120].

Но позвольте: теплота есть отталкивательная «сила» и, следовательно, действует в на­правлении обратном направлению тяжести и химического притяжения. Она есть минус, ес­ли последние принимать за плюс. Поэтому если Гельмгольц составляет свой первоначаль­ный запас силы из всеобщего и из химического притяжения, то имеющийся помимо этого запас теплоты должен был бы быть не прибавлен к нему, а вычтен из него. В противном слу­чае нужно было бы утверждать, что солнечная теплота увеличивает силу притяжения Земли, когда она, вопреки ей, превращает воду в пар и поднимает этот пар вверх; или же — что теп­лота раскаленной железной трубки, через которую пропускают водяной пар, усиливает хи­мическое притяжение кислорода и водорода, между тем как она, наоборот, прекращает его действие. Или же, чтобы пояснить это в другой форме: допустим, что шарообразная туман­ность с радиусом r, т. е. объемом в 4/3 тгг3, имеет температуру t. Допустим, далее, что другая шарообразная туманность, равной массы, имеет при более высокой температуре Т больший радиус R и объем 4/3 nR. Ясно, что во второй туманности притяжение — как механическое, так и физическое и химическое — лишь тогда сможет начать действовать с той же силой, как в первой, когда она сократится и вместо радиуса R получится радиус r, т. е. когда соответст­вующая температурной разности Тt теплота будет излучена в мировое пространство. Та­ким образом, более теплая туманность сгустится позже, чем более холодная, и, следователь­но, теплота, являясь препятствием для сгущения, оказывается, если стать на точку зрения Гельмгольца, не плюсом, а минусом «запаса силы». Следовательно, когда Гельмгольц пред­полагает возможность того, что в первоначальной туманности имелось — в форме теплоты — некоторое количество отталкивательного движения, присоединяющееся к притягатель­ным формам движения и увеличивающее их сумму, то он совершает безусловную ошибку в своих выкладках.

Придадим же всему этому «запасу сил» — как опытно доказуемому, так и теоретически возможному — один и тот же знак для того, чтобы стало возможным сложение. Так как пока что мы еще не в состоянии обратить теплоту, не в состоянии заменить ее отталкивание экви­валентным притяжением, то нам придется совершить это обращение для обеих форм притя-же-

Подчеркнуто Энгельсом. Ред.


ОСНОВНЫЕ ФОРМЫ ДВИЖЕНИЯ__________________________ 407

ния. В таком случае мы должны взять вместо силы всеобщего притяжения, вместо силы хи­мического сродства и вместо той теплоты, которая, возможно, существовала как таковая сверх этих сил уже в самом начале, просто сумму имевшегося в газовом шаре, в момент его обособления, отталкивательного движения, или так называемой энергии. С этим согласуются и выкладки Гельмгольца, когда он вычисляет то «согревание, которое должно было полу­читься благодаря предполагаемому первоначальному сгущению тел нашей системы из рас­сеянного вещества туманности». Сводя таким образом весь «запас сил» к теплоте, к отталки­ванию, он делает возможной и мысль о том, чтобы к этому «запасу сил» прибавить еще ги­потетический «запас силы теплоты». А в таком случае произведенное им вычисление выра-

1 453; " "

жает тот факт, что 453/454 всей имевшейся первоначально в газовом шаре энергии, т. е. оттал­кивания, уже излучено в виде теплоты в мировое пространство, или, выражаясь точнее, что сумма всего притяжения в теперешней солнечной системе относится к сумме всего имеюще­гося еще в ней отталкивания как 454:1. Но в таком случае эти выкладки прямо противоречат тексту доклада, к которому они приложены в качестве доказательства.

Но если представление о силе даже у такого физика, как Гельмгольц, дает повод к подоб­ной путанице понятий, то это является лучшим доказательством того, что оно вообще не может иметь научного применения во всех областях исследования, выходящих за пределы вычислительной механики. В механике причины движения принимают за нечто данное и ин­тересуются не их происхождением, а только их действиями. Поэтому если ту или иную при­чину движения называют силой, то это нисколько не вредит механике как таковой; но благо­даря этому привыкают переносить это обозначение также и в область физики, химии и био­логии, и тогда неизбежна путаница. Мы уже видели это и увидим еще не один раз.

О понятии работы мы будем говорить в следующей главе.


«ДИАЛЕКТИКА ПРИРОДЫ». СТАТЬИ И ГЛАВЫ_____________________ 408

МЕРА ДВИЖЕНИЯ. — РАБОТА311

«Напротив, я до сих пор всегда находил, что основные понятия этой области» (т. е. «основные физические понятия работы и ее неизменности») «с большим трудом даются тем лицам, которые не прошли через школу математической механики, несмотря на все усердие с их стороны, на все их способности и даже на довольно высокий уровень естественнонаучных знаний. Нельзя не признать также того, что это — абстракции совершен­но особого рода. Ведь даже такому мыслителю, как И. Кант, понимание их далось нелегко, о чем свидетельст­вует его полемика с Лейбницем по этому вопросу».

Так говорит Гельмгольц («Научно-популярные доклады», вып. II, Предисловие).

Таким образом, мы вступаем теперь в очень опасную область, тем более, что у нас нет возможности провести читателя «через школу математической механики». Но, может быть, удастся показать, что там, где дело идет о понятиях, диалектическое мышление приводит по меньшей мере к столь же плодотворным результатам, как и математические выкладки.

Галилей открыл, с одной стороны, закон падения, согласно которому пройденные падаю­щими телами пути пропорциональны квадратам времен падения. Наряду с этим он выставил, как мы увидим, не вполне соответствующее этому закону положение, что количество движе­ния какого-нибудь тела (его impeto или momento) определяется массой и скоростью, так что при постоянной массе оно пропорционально скорости. Декарт принял это последнее поло­жение и признал вообще произведение массы движущегося тела на скорость мерой его дви­жения.

Гюйгенс нашел уже, что в случае упругого удара сумма произведений масс на квадраты скоростей остается неизменной до удара и после него и что аналогичный закон имеет силу

— импульс или момент. Ред.


МЕРА ДВИЖЕНИЯ. РАБОТА____________________________ 409

для различных других случаев движения соединенных в одну систему тел.

Лейбниц был первым, кто заметил, что Декартова мера движения противоречит закону падения. Но, с другой стороны, нельзя было отрицать того, что Декартова мера оказывается во многих случаях правильной. Поэтому Лейбниц разделил движущие силы на мертвые и живые. Мертвыми силами были «давления», или «тяга», покоящихся тел; за меру их он при­нимал произведение массы на скорость, с которой двигалось бы тело, если бы из состояния покоя оно перешло в состояние движения; за меру же живой силы — действительного дви­жения тела—он принял произведение массы на квадрат скорости. И эту новую меру движе­ния он вывел прямо из закона падения.

«Необходима», — рассуждал Лейбниц, — «одна и та же сила как для того, чтобы поднять тело весом в че­тыре фунта на один фут, так и для того, чтобы поднять тело весом в один фунт на четыре фута. Но проходимые телом пути пропорциональны квадрату скорости, ибо если тело упало на четыре фута, то оно приобрело двой­ную скорость по сравнению с той скоростью, которую оно имеет, когда падает на один фут. Но при своем па­дении тела приобретают силу, с помощью которой они могут снова подняться на ту же самую высоту, с кото­рой упали; следовательно, силы пропорциональны квадрату скорости» (Зутер, «История математических наук», ч. II, стр. 367)312.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.01 сек.)