|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Принципиальная схема паровой холодильной машины и ее изображение в диаграммеПри описании принципа действия паровой холодильной машины различают теоретический и действительный циклы. Теоретическим считается цикл, при котором пар хладагента из испарителя засасывается в компрессор в состоянии насыщения при температуре и давлении кипения, а жидкость из конденсатора поступает в регулирующий вентиль в состоянии насыщения при температуре и давлении конденсации. Кроме того, считается, что в системе нет потерь давления из-за сопротивления трубопроводов и аппаратов, а процесс сжатия в компрессоре — адиабатический (без теплообмена с окружающей средой). Для эксплуатации холодильных установок интерес представляет действительный цикл холодильной машины, который и будет рассмотрен ниже. На рис. 7.4 показаны принципиальная схема и цикл паровой холодильной машины, состоящей из четырех основных элементов, которые соединены трубопроводами в замкнутую герметичную систему. В основе искусственного охлаждения лежит процесс кипения хладагента в испарителе и, в результате чего он превращается из жидкости в пар и поглощает определенное количество теплоты от объекта охлаждения. По техническим требованиям необходимо, чтобы хладагент имел постоянную и строго определенную температуру кипения t0, что достигается поддержанием в испарителе определенного и постоянного давления кипения P0. Кроме того, t0 хладагента должна быть ниже конечной температуры охлаждаемого объекта. Пар, образующийся в результате кипения, отсасывается из испарителя компрессором КМ. В теоретическом цикле считается, что из испарителя в компрессор поступает насыщенный пар, в действительности из испарителя может поступать влажный, насыщенный или перегретый пар, в зависимости от интенсивности теплопритока к испарителю и количества находящегося в нем жидкого хладагента. Во всасывающем трубопроводе перед компрессором пар дополнительно перегревается за счет теплопритока от окружающего воздуха и поступает в компрессор в перегретом состоянии. Перегрев пара перед компрессором несколько снижает эффективность работы установки, но является необходимой мерой для защиты компрессора от работы в режиме «влажного хода» и связанного с этим явлением гидравлического удара. В компрессоре пар сжимается, t и Р его повышаются, и горячий пар высокого давления нагнетается через нагнетательный трубопровод в конденсатор КД. В конденсаторе пар хладагента в результате конденсации снова превращается в жидкость, и цикл становится замкнутым. При этом теплота от хладагента отводится в конденсаторе водой или воздухом. Хладагент охлаждается до температуры насыщения и конденсируется при постоянных температуре tк и давлении конденсации Рк. В теоретическом цикле из конденсатора в регулирующий вентиль РВ поступает насыщенная жидкость. В действительном цикле в РВ может поступать как насыщенная, так и переохлажденная жидкость, которая дополнительно переохлаждается в самом конденсаторе либо в специальных аппаратах. В любом случае переохлаждение является положительным процессом, так как при этом увеличивается холодопроизводительность установки. Жидкость с высоким давлением в насыщенном или переохлажденном состоянии поступает к РВ, где дросселируется в проходном сечении соответствующего размера от Рк до Р0. При дросселировании температура хладагента снижается до t0 за счет мгновенного испарения части жидкости. Теплота испарения отводится от остальной массы хладагента, температура которого снижается. Так как теплота отводится и передается внутри системы, без теплообмена с окружающей средой, то теплосодержание (энтальпия) вещества в процессе дросселирования остается постоянным. Поскольку часть жидкости испаряется, то после РВ хладагент представляет собой парожидкостную смесь (влажный пар). Парообразование при дросселировании называют дроссельными потерями, поскольку, попадая затем вместе с жидкостью в испаритель, пар не производит в нем эффекта охлаждения. Регулирующий вентиль предназначен не только для дросселирования хладагента, но и для регулирования его подачи в испаритель. Холодильную систему можно условно разделить на два участка, давления хладагента в которых разные. Сторона высокого давления начинается от нагнетательной полости компрессора, проходит через конденсатор и заканчивается в регулирующем вентиле. Все трубопроводы и сосуды, находящиеся на этом участке установки, относятся к стороне высокого давления. Манометры, установленные на аппаратах и трубопроводах высокого давления, показывают Рк(или Р нагнетания). Сторона низкого давления начинается от РВ, проходит через испаритель и заканчивается во всасывающей полости компрессора. Все трубопроводы и сосуды, находящиеся в этой части системы, относятся к стороне низкого давления. Мановакуумметры, установленные на них, показывают Р0 или РBC. Для построения рабочего цикла в диаграмме обычно задаются конкретными параметрами, а именно: t0 — температурой кипения; tк — температурой конденсации; tBС — температурой всасывания; tП — температурой переохлаждения. Этих параметров достаточно для построения на диаграмме полного цикла холодильной машины. Прежде всего следует определить по диаграмме (см. рис. 1) Р0 и Рк по соответствующим температурам и провести на диаграмме две горизонтальные прямые — изобары Рк и Р0 (рис. 7.4). Рисунок 7.4 – Принципиальная схема и цикл паровой холодильной машины: а – принципиальная схема; б – изображение цикла в диаграмме; КМ – компрессор; КД – конденсатор; РВ – регулирующий вентиль; И – испаритель; l – работа сжатия.
1'' - 1 — перегрев пара на всасывании в компрессор при Р0= const; 1 - 2 — адиабатическое сжатие в компрессоре от Р0 до Рк при S = const; 2 - 2'' — сбив перегрева в конденсаторе при Рк= const; 2'' - 3′ — конденсация пара в конденсаторе при Рк= const, tк= const; 3′ - 3— переохлаждение жидкости в конденсаторе или ином аппарате при Рк= const; 3 - 4 — дросселирование в регулирующем вентиле от Рк до Р0 при t = const; 4 -1'' — кипение жидкости в испарителе при Р0= const и t0= const. Соответствующие точки цикла расставлены на схеме. После построения цикла холодильной машины в диаграмме можно определить все термодинамические параметры каждой точки цикла. На практике интерес представляют узловые точки, проставленные на диаграмме и схеме. Зная параметры узловых точек цикла, можно определить следующие показатели: удельную холодопроизводительность хладагента, кДж/кг, q0 = i1» — i4; удельную работу сжатия в компрессоре, кДж/кг, l =i2— i1; удельную тепловую нагрузку на конденсатор, кДж/кг, qк = i2— i3(3′); в зависимости от того, где происходит переохлаждение; холодильный коэффициент цикла ε = q0/l = (i1»— i4) / (i2— i1). Холодильный коэффициент цикла — это КПД цикла, который выражается в виде отношения поглощенной от охлаждаемого объекта теплоты к энергии, израсходованной при этом компрессором. Чем больше е, тем выше эффективность цикла.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |