АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Задача 5. 1.Якщо задана функція z = f (х; у) і напрямок , то границя відношення приросту функції Δf до Δρ при Δρ → 0 називається

Читайте также:
  1. VI. Общая задача чистого разума
  2. В задачах 13.1-13.20 даны выборки из некоторых генеральных совокупностей. Требуется для рассматриваемого признака
  3. ВАША ЗАДАЧА
  4. Вопрос 2 Проверка и оценка в задачах со случайными процессами на примере решения задач экозащиты, безопасности и риска.
  5. Вот дела не задача
  6. Глава 10 Системный подход к задачам управления. Управленческие решения
  7. ГЛАВА 2.1. ЗАЩИТА ИННОВАЦИЙ КАК ЗАДАЧА УПРАВЛЕНИЯ ИННОВАЦИОННЫМИ ПРОЦЕССАМИ
  8. Глава 4. Математические основы оптимального управления в экономических задачах массового обслуживания
  9. Двойственная задача линейного программирования.
  10. Доклад о задачах власти Советов
  11. Доклад об экономическом положении рабочих Петрограда и задачах рабочего класса на заседании рабочей секции Петроградского совета рабочих и солдатских депутатов
  12. Задание 48: (Кейс 2 подзадача 1)

1. Якщо задана функція z = f (х; у) і напрямок , то границя відношення приросту функції Δ f до Δ ρ при Δ ρ → 0 називається похідною функції за напрямком і позначається

,

де , Δ х, Δ у – приріст аргументів х та у відповідно вздовж напрямку .

2. Величина похідної за напрямком визначає швидкість зміни функції в цьому напрямку. Знак похідної – характер зміни. Якщо > 0, то функція зростає у напрямку , якщо < 0, то функція спадає за цим напрямком.

3. Якщо функція f (х; у) диференційована, то її похідна за довільним напрямком існує і дорівнює

,

де – орт напрямку .

4. Щоб знайти похідну функції z = f (х; у) за напрямком вектора треба:

– знайти частинні похідні функції;

– знайти напрямні косинуси вектора ;

– скористатися формулою для обчислення похідної за напрямом.

5. Щоб знайти похідну функції z = f (х; у) в точці М за напрямом даного вектора , треба підставити координати точки у вираз, що одержано в п. 4.

.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)