|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
I Направление выпуклости (вогнутости)Пусть функция
Определение 1. Дифференцируемая функция Говорят ещё: «график функции направлен выпуклостью вниз (вверх)». Вместо «выпукла вниз (вверх)» говорят иногда «вогнута вверх (вниз)». Ещё вместо «выпуклая вверх» говорят просто «выпуклая», а вместо «выпуклая вниз» – «вогнутая». На рисунке слева изображен график функции выпуклой вниз, а справа – вверх.
Теорема 1 (первое достаточное условие выпуклости). Пусть функция 1) если 2) если Доказательство. Обозначим:
Тогда Функция Итак, для разности ординат точки графика и точки касательной имеем равенство: В обоих случаях произведение Замечание 1. Доказанная теорема имеет простую геометрическую иллюстрацию. Если функция выпукла вниз, то угловой коэффициент касательной, т.е.
Пример 1. Исследовать на выпуклость степенную функцию Имеем
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |