|
|||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Понятие общего, среднего и предельного продукта. Изокванта и изокоста
Производство не может создавать продукцию из ничего. Процесс производства связан с потреблением различных ресурсов. В число ресурсов входит все то, что необходимо для производственной деятельности, - и сырье, и энергия, и труд, и оборудование, и пространство. Для того чтобы описать поведение фирмы, необходимо знать, какое количество продукта она может произвести, используя ресурсы в тех или иных объемах. Мы будет исходить из допущения, что фирма производит однородный продукт, количество которого измеряется в натуральных единицах - тоннах, штуках, метрах и т. д. Зависимость количества продукта, которое может произвести фирма, от объемов расходов ресурсов получила название производственной функции. Но предприятие может по-разному осуществить производственный процесс, используя разные технологические способы, разные варианты организации производства, так что и количество продукта, получаемое при одних и тех же расходах ресурсов, может быть разным. Руководители фирмы должны отклонить варианты производства, дающие меньший выход продукта, если при тех же самых расходах каждого вида ресурса можно получить больший выход. Точно так же они должны отклонить варианты, требующие бồльших расходов хотя бы одного ресурса без увеличения выхода продукта и сокращения расходов других ресурсов. Варианты, отклоняемые по этим соображениям, носят название технически неэффективных. Допустим, ваша фирма производит холодильники. Для изготовления корпуса нужно раскроить листовое железо. В зависимости от того, как будет размечен и раскроен стандартный лист железа, из него можно вырезать больше или меньше деталей; соответственно-для изготовления определенного количества холодильников потребуется меньше или больше стандартных листов железа. При этом расход всех остальных материалов, труда, оборудования, электроэнергии останется без изменения. Такой вариант производства, который может быть улучшен путем более рационального раскроя железа, должен быть признан технически неэффективным и отклонен. Технически эффективными называют варианты производства, которые нельзя улучшить ни увеличением производства продукта без увеличения расхода ресурсов, ни сокращением расходов какого-либо ресурса без снижения выпуска и без увеличения расходов других ресурсов. Производственная функция учитывает только технически эффективные варианты. Ее значение - это наибольшее количество продукта, которое может произвести предприятие при данных объемах потребления ресурсов. Рассмотрим вначале простейший случай: предприятие производит единственный вид продукции и расходует единственный вид ресурса. Пример такого производства довольно трудно найти в действительности. Даже если рассмотреть предприятие, оказывающее услуги на дому у клиентов без применения какого-либо оборудования и материалов (массаж, репетиторство) и затрачивающее только труд работников, нам пришлось бы допустить, что работники обходят клиентов пешком (не используя услуг транспорта) и договариваются с клиентами без помощи почты и телефона. Итак, предприятие, затрачивая ресурс в количестве х, может произвести продукт в количестве q. Производственная функция q = f (x) (22.1) устанавливает связь между этими величинами. Заметим, что здесь, как и в других лекциях, все объемные величины - это величины типа потока: объем расходов ресурса измеряется количеством единиц ресурса в единицу времени, а объем выпуска - количеством единиц продукта в единицу времени. На рис. 22.1 приведен график производственной функции для рассматриваемого случая. Все точки, лежащие на графике, соответствуют технически эффективным вариантам, в частности точки А и В. Точка С соответствует неэффективному, а точка D - недостижимому варианту. Производственная функция вида (22.1), устанавливающая зависимость объема производства от объема расходов единственного ресурса, может использоваться не только в иллюстративных целях. Она полезна и тогда, когда может изменяться расход лишь одного ресурса, а расходы всех остальных ресурсов по тем или иным причинам должны рассматриваться как фиксированные. В этих случаях интерес представляет зависимость объема производства от расходов единственного переменного фактора. Значительно большее разнообразие появляется при рассмотрении производственной функции, зависящей от объемов двух потребляемых ресурсов: q = f (x 1, x 2) (22.2) Анализ таких функций позволяет легко перейти к общему случаю, когда количество ресурсов может быть любым. Кроме того, производственные функции двух аргументов широко используются в практике, когда исследователя интересует зависимость объема выпуска продукта от важнейших факторов - расход труда (L) и капитала (K): q = f (L, K) (22.3) График функции двух переменных невозможно изобразить на плоскости. Производственную функцию вида (22.2) можно представить в трехмерном декартовом пространстве, две координаты которого (x 1 и x 2) откладываются на горизонтальных осях и соответствуют расходам ресурсов, а третья (q) откладывается на вертикальной оси и соответствует выпуску продукта (рис. 22.2). Графиком производственной функции служит поверхность "холма", повышающаяся с ростом каждой из координат x 1 и x 2. Построение на рис. 22.1 при этом можно рассматривать как вертикальный разрез "холма" плоскостью, параллельной оси x1 и соответствующей фиксированному значению второй координаты x 2 = x* 2. Горизонтальный разрез "холма" объединяет варианты производства, характеризующиеся фиксированным выпуском продукта q = q* при различных сочетаниях расходов первого и второго ресурсов. Если горизонтальное сечение поверхности "холма" изобразить отдельно на плоскости с координатами x 1 и x 2, получится кривая, объединяющая такие комбинации расхода ресурсов, которые позволяют получить данный фиксированный объем выпуска продукта (рис. 22.3). Такая кривая получила название изокванты производственной функции (от греч. isoz - одинаковый и лат. quantum - сколько). Допустим, что производственная функция описывает выпуск продукции в зависимости от расходов труда и капитала. Одно и то же количество продукции можно получить при различных сочетаниях расходов этих ресурсов. Можно использовать небольшое количество машин (т. е. обойтись небольшими расходами капитала), но при этом придется затратить большое количество труда; можно, напротив, механизировать те или иные операции, увеличить количество машин и за счет этого снизить расходы труда. Если при всех таких сочетаниях наибольший возможный объем выпуска остается постоянным, то эти сочетания изображаются точками, лежащими на одной и той же изокванте. Зафиксировав объем выпуска продукта на другом уровне, мы получим другую изокванту той же самой производственной функции. Выполнив серию горизонтальных разрезов на различных высотах, получим так называемую карту изоквант (рис. 22.4) - наиболее распространенное графическое представление производственной функции от двух аргументов. Она похожа на географическую карту, на которой рельеф местности изображен горизонталями (иначе - изо-гипсами) - линиями, соединяющими точки, лежащие на одинаковой высоте. Нетрудно заметить, что производственная функция во многом похожа на функцию полезности в теории потребления, изокванта - на кривую безразличия, карта изоквант - на карту безразличия. Позже мы убедимся в том, что свойства и характеристики производственной функции имеют много аналогий в теории потребления. И дело тут не в простом сходстве. По отношению к ресурсам фирма ведет себя как потребитель, и производственная функция характеризует именно эту сторону производства - производство как потребление. Тот или иной набор ресурсов полезен для производства постольку, поскольку он позволяет получить соответствующий объем выпуска продукта. Можно сказать, что значения производственной функции выражают полезность для производства соответствующего набора ресурсов. В отличие от потребительской полезности эта "полезность" имеет вполне определенную количественную меру - она определяется объемом производимой продукции. То обстоятельство, что значения производственной функции относятся к технически эффективным вариантам и характеризуют наибольший выпуск продукции при потреблении данного набора ресурсов, также имеет аналогию в теории потребления. Потребитель может по-разному использовать приобретаемые блага. Полезность покупаемого набора благ определяется таким способом их использования, при котором потребитель получает наибольшее удовлетворение. Однако при всех отмеченных чертах сходства потребительской полезности и "полезности", выражаемой значениями производственной функции, это совершенно разные понятия. Потребитель сам, исходя только из своих собственных предпочтений, определяет, насколько полезен для него тот или иной продукт, - покупая или отвергая его. Набор производственных ресурсов в конечном счете окажется полезным в той мере, в какой будет одобрен потребителем тот продукт, который произведен с использованием этих ресурсов. Поскольку производственной функции присущи наиболее общие свойства функции полезности, мы можем далее рассмотреть основные ее свойства, не повторяя подробных рассуждений. Будем считать, что увеличение расхода одного из ресурсов при неизменных расходах другого позволяет увеличить выход продукции. Это значит, что производственная функция - возрастающая функция каждого из своих аргументов. Через каждую точку плоскости ресурсов с координатами х 1, х 2 проходит единственная изокванта. Все изокванты имеют отрицательный наклон. Изокванта, отвечающая большему выходу продукта, располагается правее и выше изокванты для меньшего выхода. Наконец, все изокванты будем считать выпуклыми в направлении начала координат. На рис. 22.5 изображены некоторые карты изоквант, характеризующие различные ситуации, возникающие при производственном потреблении двух ресурсов. Рис. 22.5, а соответствует абсолютному взаимозамещению ресурсов. В случае, представленном на рис. 22.5, б, первый ресурс может быть полностью замещен вторым: точки изоквант, расположенные на оси х2 показывают количество второго ресурса, позволяющее получить тот или иной выход продукта без использования первого ресурса. Использование первого ресурса позволяет сократить расходы второго, но полностью заменить второй ресурс первым невозможно. Рис. 22.5, в изображает ситуацию, в которой оба ресурса необходимы и ни один из них не может быть полностью замещен другим. Наконец, случай, представленный на рис. 22.5, г, характеризуется абсолютной взаимодополняемостью ресурсов. Производственная функция, зависящая от двух аргументов, имеет довольно наглядное представление и сравнительно проста для расчетов. Нужно заметить, что в экономике используются производственные функции различных объектов - предприятия, отрасли, национального и мирового хозяйства. Чаще всего это функции вида (22.3); иногда добавляют третий аргумент - расходы природных ресурсов (N): q = f (L, K, N). Это имеет смысл, если количество природных ресурсов, вовлекаемых в производственную деятельность, является переменным. прикладных экономических исследованиях и в экономической теории используются производственные функции разных типов. В прикладных расчетах требования практической вычислимости заставляют ограничиться небольшим числом факторов, и эти факторы рассматриваются укрупненно - "труд" без подразделения по профессиям и квалификации, "капитал" без учета его конкретного состава, и т. д. При теоретическом анализе производства можно отвлечься от трудностей практической вычислимости. еоретический подход требует каждый вид ресурса считать абсолютно однородным. Сырье различных сортов должно рассматриваться как различные виды ресурсов, точно так же, как машины различных марок или труд, различающийся по профессиональному и квалификационному признакам. Таким образом, используемая в теории производственная функция - это функция большого числа аргументов: q = f (x 1, x 2,..., xn) (22.4) Такой же подход применялся и в теории потребления, где число видов потребляемых благ никак не ограничивалось. се, что было ранее сказано о производственной функции двух аргументов, может быть перенесено и на функцию вида (22.4), разумеется, с оговорками, касающимися размерности. Изокванты функции (22.4) - это не плоские кривые, а n -мерные поверхности. Тем не менее мы и в дальнейшем будем пользоваться "плоскими изоквантами" - и в иллюстративных целях, и как удобным средством анализа в случаях, когда расходы двух ресурсов являются переменными, а остальных считаются фиксированными. С производственной функцией связан ряд важных характеристик производства. В первую очередь к ним относятся показатели производительности (продуктивности) ресурсов, характеризующие объем производимого продукта, приходящийся на единицу затрачиваемого ресурса каждого вида. Средним продуктом i -того ресурса называется отношение объема продукции q к объему использования этого ресурса
APi = q / xi Если, например, предприятие выпускает 5 тыс. изделий в месяц, а месячные расходы труда составляют 25 тыс. часов, то средний продукт труда равен 5000/25 000 = 0.2 изд./ч. Эта величина ничего не говорит о том, как изменится выход продукта при изменении объема расходов данного ресурса. Если расходы i -тогo ресурса увеличились на величину, и вследствие этого выпуск продукта увеличится на величину (при неизменных расходах прочих ресурсов), то прирост выпуска на единицу прироста расходов данного ресурса определяется отношением /. Предел этого отношения при Δхi, стремящемся к нулю, получил название предельного продукта данного ресурса:
Если в условиях предыдущего примера число работников несколько увеличится, так что расходы труда в месяц составят 26 тыс. часов, парк оборудования, расходы сырья, энергии и тому подобное останутся прежними и при этом месячный выпуск продукции составит 5100 изделий, то предельный продукт равен приблизительно (5100-5000)/(26 000-25 000) = 0.1 изд./ч (приблизительно, так как приращения не являются бесконечно малыми). Предельный продукт равен частной производной производственной функции по объему расходов соответствующего ресурса:
И средний, и предельный продукт не являются постоянными величинами, они изменяются с изменением расходов всех ресурсов. Общая закономерность, которой подчинены различные производства, получила название закона убывающего предельного продукта: с ростом объема расходов любого ресурса при постоянном уровне расходов остальных ресурсов предельный продукт данного ресурса снижается. С чем связано снижение предельного продукта? Представим себе предприятие, хорошо оснащенное различным оборудованием, имеющее достаточную площадь для осуществления производственного процесса, обеспеченное сырьем и различными материалами, но располагающее малым числом рабочих. На фоне остальных ресурсов рабочая сила является своего рода узким местом, и, надо полагать, дополнительный работник будет использован весьма рационально. Соответственно прирост продукции может быть значительным. Если же при сохранении прежних уровней всех прочих ресурсов число рабочих будет большим, труд дополнительного работника не будет уже столь хорошо обеспечен инструментом, механизмами, ему, возможно, будет мало места для работы и т. д. В этих условиях привлечение дополнительного работника не вызовет большого прироста выпуска продукции. Чем больше работников, тем меньше прирост выпуска продукции, обусловленный привлечением дополнительного работника. Подобным же образом изменяется предельный продукт любого ресурса. Убывание предельного продукта иллюстрирует рис. 22.6, на котором представлен график производственной функции в предположении, что только один фактор является переменным. Зависимость объема продукта от расходов ресурса выражается вогнутой (выпуклой вверх) функцией. Некоторые авторы формулируют закон убывающего предельного продукта иначе: если объем потребления ресурса превышает некоторый уровень, то при дальнейшем увеличении потребления этого ресурса его предельный продукт снижается. При этом допускается возрастание предельного продукта при малых объемах потребления ресурса. Кроме того, технические характеристики многих видов ресурсов таковы, что при чрезмерных объемах их использования выход продукта не увеличивается, а уменьшается, т. е. предельный продукт оказывается отрицательным. С учетом этих эффектов график производственной функции приобретает вид кривой на рис. 22.7, на которой выделяются три участка: 1 - предельный продукт возрастает, функция выпукла; 2 - предельный продукт убывает, функция вогнута; 3 - предельный продукт отрицателен, функция убывает. Точки, попадающие на участок 3, соответствуют технически неэффективным вариантам производства и поэтому не представляют интереса. Соответствующая область значений расходов ресурса получила название неэкономической. К экономической области относят ту область изменения расходов ресурсов, где с ростом расхода ресурса выпуск продукта растет. На рис. 22.7 это участки 1 и 2. о мы будем рассматривать закон убывающего предельного продукта в первой форме, т. е. будем считать предельный продукт убывающим при любых объемах расходов ресурса (в пределах экономической области). Одно и то же количество продукта может быть получено при различных комбинациях ресурсов, и изокванта производственной функции соединяет точки, соответствующие таким комбинациям. При переходе от одной точки изокванты к другой точке той же самой изокванты происходит уменьшение расходов одного ресурса с одновременным увеличением расходов другого, так что при этом выпуск продукции остается без изменения, т. е. имеет место замещение одного ресурса другим. Будем считать, что производство потребляет два вида ресурсов. Меру заменяемости второго ресурса первым характеризует количество второго ресурса, компенсирующее изменение количества первого ресурса на единицу при движении по изокванте. Эта величина называется нормой технической замены и равна -D x 2/D x 1 (рис. 22.8). Знак "минус" связан с тем, что приращения и имеют противоположные знаки. Величина нормы замены зависит от величины приращения; чтобы избавиться от этого обстоятельства, пользуются предельной нормой технической замены:
Предельная норма технической замены связана с предельными продуктами обоих ресурсов. Возможность получить определенный выход продукта разными способами, или, иначе, взаимная за-мещаемость ресурсов, делает закономерным вопрос: какая комбинация ресурсов в наибольшей степени отвечает интересам предприятия? Предприятие покупает ресурсы на рынках сырья, рабочей силы, энергии и т. д. Будем считать, что цена pi, по которой покупается i -тый ресурс, не зависит от объема покупки. Расходы фирмы на приобретение ресурсов в двумерном случае
ТC = p 1 x 1 + p 2 x 2 Множество комбинаций ресурсов, расходы на покупку которых одинаковы, графически изображается, прямой - аналогом бюджетной линии в теории потребления. В теории производства эта линия называется изокостой (от англ. cost - расходы). Ее наклон определяется соотношением цен p 1/ p 2. Постулат о рациональности поведения, лежащий в основе теоретической экономики, относится ко всем субъектам хозяйствования. Фирма, выступая на рынках ресурсов как рациональный потребитель и несущая расходы С, заинтересована в приобретении наиболее полезной комбинации ресурсов, т. е. комбинации ресурсов, дающей наибольший выход продукта. Задача определения наилучшей в этом смысле комбинации ресурсов полностью аналогична задаче нахождения потребительского оптимума. А в точке оптимума, как мы знаем, бюджетная линия касается кривой безразличия; соответственно и в точке, изображающей оптимальную комбинацию ресурсов, изокоста должна касаться изокванты (рис. 22.9, а). В этой точке MRTS (наклон изокванты) и отношение цен р 1/ р 2 (наклон изокосты) совпадают.
MRTS = p 1/ p 2
MP 1/ MP 2= p 1/ p 2 Значения предельных продуктов каждого из ресурсов при оптимальной их комбинации должны быть пропорциональны их ценам. Допустим, что при сложившихся объемах потребления ресурсов MP 1 =0.1, MP 2 =0.2, а цены p 1 =100, p 2 =300. При этом MP 1/ MP 2 = 1/2, p 1/ p 2 = l/3, так что данная комбинация не оптимальна. Увеличивая потребление первого ресурса (при этом MP 1 снизится) и уменьшая потребление второго (МР 2 увеличится), можно прийти к выполнению условия (22.11). Значит, потребление первого ресурса было недостаточным, второго - избыточным. Мы могли бы по-иному определить наилучшую комбинацию ресурсов. Фирма, производящая продукт в количестве q, заинтересована в выборе такого варианта производства, который позволил бы получить данный выход продукта при наименьших расходах на приобретение ресурсов. Задача сводится к отысканию на заданной изокванте такой точки, которая располагалась бы на самой низкой изокосте. И в этом случае искомая комбинация изображается точкой касания изокванты и изокосты (рис. 22.9, б), а для нее должно выполняться соотношение (22.11). В отличие от потребителя, доход которого предполагается заданным, для фирмы ни расходы на ресурсы, ни выпуск продукции не являются заданными величинами. И то и другое - результат согласованного выбора с учетом ситуации на рынке продукта. Однако, зная цены ресурсов, мы можем выделить экономически эффективные варианты производственного процесса. Будем называть вариант экономически эффективным, если фирма не может увеличить выпуск продукта без увеличения расходов на ресурсы и не может снизить расходов без сокращения выпуска. На рис. 22.10 точка Е соответствует эффективному, а точки А и В - неэффективным вариантам: вариант А дороже, чем Е, при том же выходе продукта; варианту В соответствуют те же расходы, что и варианту Е, но выход продукта здесь меньше. Пропорциональность предельных продуктов ценам ресурсов мы можем теперь трактовать как условие экономической эффективности производственного варианта. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.012 сек.) |