|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Векторы и скаляры
Многие физические величины характеризуются одним числом. К ним, например, относят температуру, выражаемая числом градусов в определенной шкале, масса – числом граммов и т.д. Такие величины называются скалярами. Для характеристики многих других физических величин необходимо задать несколько чисел. Например, скорость определяется не только численным значением, но и направлением. Вектор представляет собой направленный отрезок прямой, длина которого равна представляемой вектором физической величине, а стрелка показывает ее направление. Иногда векторы обозначаются просто жирной буквой, например, А, а их абсолютное значение – либо той же жирной буквой, заключенной между вертикальными черточками: А либо той же буквой, но светлым шрифтом. Поскольку векторы характеризуются как направлением, так и величиной, то работать с векторными величинами нужно по особым правилам:
1) Сложение векторов. Сложение векторов и осуществляется либо по правилу треугольника (см. рисунок 1) либо по правилу параллелограмма (см. рисунок 2). Пусть нам даны два вектора и (см. рисунок 1). Перенесём вектор параллельно самому себе так, чтобы его начало оказалось совмещённым с концом вектора . Тогда вектор , проведённый из начала вектора в конец вектора , будет представлять собой результирующий вектор .
Можно, однако, осуществить построение иным способом, представленным на рисунке 2. Перенесем вектор или так, чтобы начала обоих векторов казались совмещенными. Затем построим на векторах и параллелограмм. Диагональ параллелограмма совпадает с вектором , полученным по способу, показанному на рисунке 1, т.е. оба рассмотренных способа дают одинаковый результат. 2) Очень часто проведение конкретных численных расчетов гораздо проще, если работать с векторами в координатной форме, где они носят чисто арифметический характер. Поэтому важно уметь записывать все векторные выражения и операции в координатной форме. В первую очередь это необходимо уметь делать в декартовых координатах. В этом случае любой вектор может быть, спроецирован на оси координат и проекции этого вектора находятся следующим образом: . Рисунок 3
На рисунке 3 представлены проекции вектора в пространственной декартовой системе координат (а) и произвольного вектора А в той же системе на плоскости (б) Из рисунка 3 видно, что модуль вектора может быть выражен следующим образом: . 3) Удобной записью векторных величин является их запись с помощью единичных векторов – это векторы, у которых абсолютное значение равно единице, а направления соответствуют направлению самого вектора. Поэтому любой вектор можно представить виде , (1) Где модуль вектора, а – единичный вектор или орт вектора , направленный так же, как и вектор . Умножив обе части равенства (1) на скаляр, равный , придем ксоотношению . Из этого соотношения следует, что орт является безразмерной величиной.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |