АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Колебания пружины

Читайте также:
  1. Акустические колебания
  2. Акустические колебания, их классификация, характеристики, вредное влияние на организм человека, нормирование.
  3. В схеме, состоящей из конденсатора и катушки, происходят свободные электромагнитные колебания. Энергия конденсатора в произвольный момент времени t определяется выражением
  4. Воздействие негативных факторов на человека и их нормирование (вибрации и акустические колебания)
  5. Вопрос 12 Механические колебания
  6. Вопрос 12 Механические колебания (вибрация)
  7. Вопрос 13 Акустические колебания (шум)
  8. Вопрос 26 : Свободные гармонические механические колебания и их характеристики. Математический и физический маятники.
  9. Вопрос№15 Механические колебания. Виды колебаний. Параметры колебаний движения
  10. Вынужденные колебания
  11. Вынужденные колебания
  12. Вынужденные колебания

 

Рисунок 3.3

Простейшим примером гармонического колебания, служат колебания груза на конце пружины. Многие другие виды колебательных движений проявляют большое сходство с этими колебаниями; например, колебания, происходящие в системе кровообращения, дыхания, сокращения мышц. Поэтому мы разберем этот пример подробно. Будем считать, что массой пружины можно пренебречь и, что пружина установлена горизонтально, как показано на рисунке 3.3.

К одному концу пружины прикреплен груз массой m, который движется без трения по горизонтальной поверхности. Любая пружина имеет определенное значение длины, при котором с ее стороны на груз не действует сила; в этом случае говорят, что пружина находится в положении равновесия. Если сдвинуть груз вправо, растягивая пружину, или влево, сжимая ее, то пружина действует на груз с силой, которая стремится вернуть его в положение равновесия; такую силу называют возвращающей. Для нашей системы возвращающая сила прямо пропорциональна расстоянию ,на которое сжимается или растягивается пружина (см. рисунок 3.3):

. (3.4)

Знак минус означает, что возвращающая сила всегда противоположна по направлению перемещению . Если на рисунке 3.3 мы направим ось, например, вправо, заметим, что положение равновесия мы выбрали в точке . Когда пружину сжимают, сила направлена вправо (см. рисунок 3.3), а перемещение влево. Постоянная величина в формуле (3.4), называется жесткостью пружины.

Что же произойдет, если пружину растянуть на длину , и затем отпустить? Пружина действует на груз с силой, которая стремится вернуть его в положение равновесия. Но поскольку эта сила сообщает грузу ускорение, груз приходит в положение равновесия со значительной скоростью. Заметим, что в положении равновесия сила, действующая на груз, уменьшается до нуля, а скорость его в этой точке максимальна (см. рисунок 3.2). Когда груз, проскочив положение равновесия, движется влево, сила со стороны пружины замедляет его, и в точке груз на мгновение останавливается, а затем начинает двигаться в противоположном направлении, пока не придет в точку , откуда он начал движение. Затем весь этот процесс повторяется. Рассматриваемый колебательный процесс происходит лишь под действием внутренней силы – силы упругости, поэтому рассматриваемые колебания являются собственными.

Уравнение второго закона Ньютона для груза на пружине имеет вид:

.

 

Преобразуем это уравнение следующим образом:

. (3.5)

Коэффициент при положителен, поэтому его можно представить в следующем виде:

. (3.6)

Применяя в уравнении (3.5) обозначения (3.6), получим:

. (3.7)

Таким образом, движение груза под действием силы вида (3.4) описывается линейным, однородным дифференциальным уравнением второго порядка.

Легко убедиться, что общее решение уравнения (3.7) имеет вид:

. (3.8)

Смещение изменяется со временем по закону косинуса. Следовательно, движение системы, находящейся под действием силы , представляет собой гармоническое колебание. Из уравнения (3.8) следует, что введенный коэффициент представляет собой частоту колебаний и называется собственной частотой колебаний системы, находится по формуле

. (3.9)

Из формулы (3.9), очевидно, что частота собственных колебаний системы определяется свойствами самой системы, т.е. ее упругими свойствами.

 

3.4 Полная энергия собственных колебаний

 

В простых гармонических колебаниях происходит непрерывный переход потенциальной энергии в кинетическую энергию, и обратно; полная энергия колеблющейся системы сохраняется, если в системе отсутствуют силы трения.

Выясним, как изменяется со временем кинетическая и потенциальная энергия гармонического колебания на примере упругой пружины. Кинетическая энергия равна (см. выражения (2.18) и (3.2))

. (3.10)

Потенциальная энергия выражается формулой (см. выражения (2.21) и (3.1))

. (3.11)

Складывая (3.9) (3.10), с учетом соотношения (3.6) получим:

(3.12)

Из соотношения (3.12) видно, что полная энергия свободных колебаний равна максимальной потенциальной энергии или максимальной кинетической энергии гармонических колебаний и прямо пропорциональна массе колеблющейся точки , квадрату амплитуды и квадрату частоты колебания.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)