АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вынужденные колебания. Чтобы колебания частицы в вязкой среде были гармоническими (с постоянной амплитудой ), к частице надо приложить вынужденную силу:

Читайте также:
  1. Акустические колебания
  2. Акустические колебания, их классификация, характеристики, вредное влияние на организм человека, нормирование.
  3. В схеме, состоящей из конденсатора и катушки, происходят свободные электромагнитные колебания. Энергия конденсатора в произвольный момент времени t определяется выражением
  4. Воздействие негативных факторов на человека и их нормирование (вибрации и акустические колебания)
  5. Вопрос 12 Механические колебания
  6. Вопрос 12 Механические колебания (вибрация)
  7. Вопрос 13 Акустические колебания (шум)
  8. Вопрос 26 : Свободные гармонические механические колебания и их характеристики. Математический и физический маятники.
  9. Вопрос№15 Механические колебания. Виды колебаний. Параметры колебаний движения
  10. Вынужденные колебания
  11. Вынужденные колебания

 

Чтобы колебания частицы в вязкой среде были гармоническими (с постоянной амплитудой ), к частице надо приложить вынужденную силу:

 
 


(12.1)

 

где положительные постоянные и ω — амплитуда и круговая частота колебаний силы соответственно.

С учетом вынуждающей силы дифференциальное уравнение (11.3) принимает вид

 

(12.2)

 

 

Решение уравнения (12.2) дает закон движения частицы, называемый вынужденными колебаниями частицы,

(12.3)

 

где

(12.4)

 

(12.5)

 

Из выражения (12.4) видно, что амплитуда колебаний частицы зависит от круговой частоты ω колебаний вынуждающей силы . Найдем частоту при которой амплитуда имеет максимальное значение. Очевидно, что при подкоренное выражение в соотношении (12.4) должно быть минимальным, т. е. при

 

 

 

 

откуда

 

(12.6)

 

Круговую частоту называют резонансной частотой. Резкое возрастание амплитуды выраженных колебаний частицы при частоте ω колебаний вынуждающей силы равной резонансной, называют явлением резонанса.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)