АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ПРИРОДА РЕНТГЕНІВСЬКИХ ПРОМЕНІВ, МЕТОДИ ЇХ ОДЕРЖАННЯ

Читайте также:
  1. A. Учебно-методическое обеспечение самостоятельной работы студентов
  2. I.Организационно – методический раздел
  3. II Методика виконання курсової роботи.
  4. II. ПОРЯДОК И МЕТОДИКА ПРОВЕДЕНИЯ ЭКЗАМЕНА
  5. II. Учебно-методический блок
  6. II. Учебно-методический блок
  7. III. Методика расчета эффективности электрофильтра.
  8. IV. ІНФОРМАЦІЙНО-МЕТОДИЧНЕ ЗАБЕЗПЕЧЕННЯ
  9. IV. Методические указания по прохождению производственной практики
  10. S.I.2. Види діяльності, які може здійснювати юридична особа після одержання нею спеціального дозволу (ліцензії)
  11. V. Учебно-методическое обеспечение курса
  12. V. Учебно-методическое обеспечение курса

Рентгенівські промені за своєю природою є різновидністю елек­тромагнітних хвиль. Радіохвилі, інфрачервоні, ультрафіолетові, промені видимого світла і гамма-промені — це також різновиднос­ті електромагнітних хвиль. Промені відрізняються один від одного довжиною електромагнітних хвиль. Довжина хвиль видимого світ­ла дорівнює 0,76—0,40 мк (мк — мікрон = 0,000001 м), інфрачер­воних променів — 340—0,76 мк, ультрафіолетових — менше 0,4 мк (0,18—0,40 мк). Рентгенівські промені мають довжину хвилі (в ангстремах — А) від 15А до 0.034А. В діагностичних рентгенів­ських апаратах практично одержують промені з довжиною хвилі 0,1—0,8А. Меншу довжину хвиль (близько 0,001А) мають гамма-промені радіоактивного розпаду. Людське око здатне сприймати промені з довжиною електромагнітних хвиль від 7600 до 4000А, а тому рентгенівські промені для людини невидимі.

Джерелом виникнення рентгенівських променів є внутрішньо­атомна енергія. Атом складається з позитивно зарядженого ядра й від'ємне заряджених електронів, які рухаються навколо ядра. Електрони атома об'єднані у вигляді шару або оболонки, кожна з яких має певний запас енергії. Електронні оболонки позначають латинськими буквами від К до Р. Найближче до атомного ядра розміщена оболонка «К», найбільш віддалена від нього — «Р». Електрони атомних оболонок мають тим більше енергії, чим даль­ше оболонка знаходиться від ядра.

У світлі електронної теорії метали відрізняються від інших тіл тим, що мають вільні електрони, які хаотично рухаються. Якщо


приєднати кінці металевого провідника до полюсів генератора струму, то вільні електрони будуть чітко поступально рухатися. Рух електронів у провіднику, спрямований від катода генератора струму до його анода, є електричним струмом. Якщо металевий провідник розігріти, він починає виділяти електрони. Це явище називають електронною емісією. Воно відіграє важливу роль у виникненні рентгенівських променів.

Для одержання рентгенівських променів спочатку необхідно розігріти спіраль рентгенівської трубки до 2500 °С струмом низь­кої напруги (до 10 В) від знижуючого трансформатора. З розігрі­тої спіралі постійно вилітають електрони, що мають малу кінетич­ну енергію. Вони утворюють біля спіралі так звану електронну хмарку. При підведенні до рентгенівської трубки електричного струму високої напруги (50—150 кВ) через підвищуючий транс­форматор, електрони, які мають однойменний заряд із спіраллю, будуть відштовхуватися від спіралі з великою силою і прямоліній­но полетять вперед. У момент удару їх в анод і гальмування весь запас кінетичної енергії електронів перетворюється у два види енергії: теплову та світлову (енергія рентгенівського випроміню­вання). Теплова енергія становить близько 99 % кінетичної енер­гії електронів, а енергія електромагнітних коливань — близько 1 %. Виниклі таким чином рентгенівські промені мають назву «рентгенівські промені гальмування». Крім того, внаслідок бом­бардування електронами пластинки анода, виникають ще так зва­ні «характеристичні рентгенівські промені». Електрон, який одер­жав значний запас кінетичної енергії, проникнувши в глибину атомної системи анода, вибиває електрон з якої-небудь оболонки його атома. На вільне місце вибитого електрона зразу рухається один з електронів оболонки, що знаходиться вище, а запас енергії, який при цьому звільнився, утворює порцію (квант) рентгенівського випромінювання.

Якість рентгенівських променів визначається твердістю або їх проникаючою здатністю. Твердість рентгенівських променів зале­жить від величини напруги електричного струму, який надходить із високовольтного трансформатора до полюсів рентгенівської трубки. Якщо подавати на рентгенівську трубку напругу в 10— 20 тис. вольт, то швидкість руху електронів від спіралі до анода буде порівняно невеликою і сила удару їх в анодну пластинку буде слабкою. При цьому виникають рентгенівські промені з дов­гою хвилею, які здатні проникати на малу глибину. Такі промені називають м'якими рентгенівськими променями. Якщо до полюсів трубки подавати струм високої напруги (100 кВ), то швидкість руху електронів в.ід спіралі до анода буде дуже великою (близько 200 тис. км/с), а сила удару їх в анод — величезною. Одержані при цьому рентгенівські промені будуть мати дуже коротку дов­жину хвилі й високу проникаючу здатність. Ці промені називають


твердими рентгенівськими. Твердість рентгенівського випроміню­вання практично вимірюється кіловольтами, оскільки вона зале­жить від напруги.

Кількість рентгенівських променів визначається інтенсивністю випромінювання, яка залежить в основному від ступеня нагріван­ня спіралі катода. Змінюючи температуру нагрівання спіралі при однаковій напрузі, можна підвищувати або зменшувати емісію-електронів, що зумовлює силу струму в трубці і кількість рентге­нівських променів. Отже, змінюючи ступінь нагрівання спіралі при однаковій різниці потенціалів на полюсах рентгенівської труб­ки (твердість променів), можна одержувати різну інтенсивність рентгенівського випромінювання. Інтенсивність рентгенівських променів вимірюють у міліамперах, оскільки кількість променів залежить від електронів, а потік електронів — це електричний струм. Однак сила струму, що проходить через трубку, невелика й вимірюється у тисячних частках ампера (міліамперах). При стру­мі в 1 міліампер кількість електронів становить 6,3-1015 за 1 с.

Таким чином, при одній і тій же твердості, змінюючи ступінь нагрівання спіралі, можна одержувати різну інтенсивність рентге­нівських променів. З другого боку, при одній і тій же інтенсив­ності можна одержувати різну твердість променів, змінюючи на­пругу на полюсах трубки. Можливість роздільно регулювати твер­дість випромінювання і його інтенсивність надзвичайно суттєва для вирішення ряду питань при рентгенівському дослідженні тварин.

Рентгенівські промені поширюються подібно до світла. При взаємодії з середовищем вони частково поглинаються, частково відбиваються І розсіюються. Однак ураховуючи те, що довжина хвилі рентгенівських променів невелика, а енергія випромінюван­ня значна, вони мають ще ряд інших властивостей. Рентгенівські промені проникають через непрозорі для видимого світла тіла різної щільності — дерево, картон, папір, тканини людського й тваринного організму і навіть через тонкий шар окремих металів. Глибина проникнення рентгенівських променів залежить від дов­жини хвилі та властивостей матеріалу. Чим менша довжина хви­лі, тим глибше в середовище проникають рентгенівські промені^ Чим щільніше середовище, тим більше у ньому поглинаються рентгенівські промені.

Рентгенівські промені викликають холодне світіння (люмінес­ценцію) деяких хімічних сполук. Одні речовини світяться у мо­мент дії їх (флюоресценція), інші — продовжують світитися де­який час після припинення дії променів (фосфоресценція). Подіб­но видимому світлу рентгенівські промені викликають зміни у сполуках срібла світлочутливого шару фотоплівок (фотохімічний ефект).

Рентгенівські промені викликають іонізацію повітря, внаслідок

33*


чого утворюються позитивно і негативно заряджені частинки —• іони. Іонізоване середовище стає провідником електричного стру­му. Цю властивість використовують для вимірювання інтенсивнос­ті променів за допомогою іонізаційної камери.

Властивістю рентгенівських променів є виражена біологічна дія. Проходячи через тканини, вони можуть викликати різні зміни залежно від виду тканини й дози енергії променів. Малі дози сти­мулюють обмінні процеси у тканинах, великі пригнічують життє­діяльність тканин, викликають у них функціональні й морфологіч­ні зміни аж до загибелі клітин. Тривала дія малих доз рентгенів­ських променів або вплив зразу великої дози може спричиняти в організмі променеву хворобу.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)