АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция
|
Жидкой частицы
Движение деформируемой
Движение жидкой частицы является более сложным, чем в случае твердого тела, которое, как известно из механики, может складываться из поступательного движения полюса и вращательного движения тела относительно этого полюса. Особенностью частиц жидкости, как уже неоднократно отмечалось, является текучесть, т. е. легкая их деформируемость под действием самых ничтожных сил. Поэтому, помимо поступательного и вращательного жидкая частица может участвовать также в деформационном движении. Это положение и составляет суть так называемой первой теоремы Гельмгольца, к рассмотрению которой мы приступаем. Важнейшим достоинством приводимых ниже выкладок и рассуждений, достаточно простых, но требующих внимания, является то, что они раскрывают физический смысл и вносят ясность в ряд казалось бы совершенно абстрактных понятий.
Рассмотрим жидкую частицу в форме прямоугольного параллелепипеда (рис. 1.1). Длина его ребер dx, dy, dz. Деформация такой жидкой частицы может быть как линейной (ребра удлиняются и укорачиваются), так и угловой (возникает перекос граней). Наиболее удобно рассматривать каждый из этих видов деформаций раздельно.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | Поиск по сайту:
|