АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Упражнения. 1) Линейный оператор А унитарного (комплексного евклидового) пространства называется нормальным, если Докажите

Читайте также:
  1. F. Расслабляющие упражнения
  2. I. СТРОЕВЫЕ УПРАЖНЕНИЯ
  3. АКРОБАТИЧЕСКИЕ УПРАЖНЕНИЯ
  4. АКРОБАТИЧЕСКИЕ УПРАЖНЕНИЯ
  5. Беговые упражнения
  6. Биоэнергетические упражнения по установлению связи с землей
  7. БРОСКОВЫЕ УПРАЖНЕНИЯ
  8. Вводные упражнения
  9. Вводные упражнения — вводные положения
  10. Вводные упражнения — вводные положения
  11. Вводные упражнения — вводные положения
  12. Враджана-пранаяма — дыхательные упражнения при ходьбе

 

1) Линейный оператор А унитарного (комплексного евклидового) пространства называется нормальным, если Докажите, что линейный оператор нормален тогда и только тогда, когда для него существует ортонормированный базис из собственных векторов.

2) Линейный оператор U унитарного пространства называется унитарным, если Докажите, что нормальный оператор унитарен тогда и только тогда, когда все его собственные значения по модулю равны единице.

3) Линейный оператор Н унитарного пространства называется эрмитовым, если . Линейный оператор K унитарного пространства называется косоэрмитовым, если . Докажите, что нормальный оператор эрмитов тогда и только тогда, когда все его собственные значения действительны.

4) Эрмитов оператор H унитарного пространства называется неотрицательным, если для любого ненулевого вектора х. Докажите, что эрмитов оператор неотрицательный тогда и только, когда все собственные значения этого оператора неотрицательны.

5) Эрмитов оператор H унитарного пространства называется положительно определенным, если для любого ненулевого вектора х. Докажите, что эрмитов оператор положительно определен тогда и только, когда все собственные значения этого оператора положительны.

6) Докажите, что для любого линейного оператора, действующего в унитарном пространстве, существует эрмитово разложение

, где Н 1 и Н 2 – эрмитовы операторы, .

7) Докажите, что если А – нормальный оператор, то нормальны также линейные операторы для любой константы , для любого натурального k, f(A) для любого многочлена f(t), для невырожденного оператора А, .

8) Для любого линейного оператора А унитарного пространства существует полярное разложение в виде произведения неотрицательного и унитарного операторов. Докажите это.

9) Докажите, что ядро нормального оператора является ортогональным дополнением к его образу.

10) Докажите, что инвариантное подпространство нормального оператора инвариантно и относительно .

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)