АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Теорема Лагранжа

Читайте также:
  1. S-M-N-теорема, приклади її використання
  2. Б1 1.Системы линейных алгебраических уравнений (СЛУ). Теорема Кроникера-Капелли. Общее решение СЛУ.
  3. Базисный минор и ранг матрицы. Теорема о базисном миноре
  4. Билет 22Понятие евклидова пространства, неравенство Коши-Буняковского. Теорема Кронекера Капелли.
  5. Билет 5 Теорема Безу и следствия из неё. Основная теорема алгебры.
  6. Внешние эффекты (экстерналии). Теорема Коуза.
  7. Внешние эффекты трансакционные издержки. Теорема Коуза
  8. Внешние эффекты, их виды и последствия. Теорема Коуза
  9. Внешние эффекты. Теорема Коуза.
  10. Внешние эффекты. Теорема Коуза.
  11. Вопрос 1 теорема сложения вероятностей
  12. Вопрос 24 Теорема Остроградского-Гаусса для электрического поля в вакууме

 

Теорема. Любую квадратичную форму с помощью невырожденного линейного преобразования неизвестных можно привести к виду, в котором коэффициент при квадрате первой переменной отличен от нуля.

Доказательство. Рассмотрим квадратичную форму где Если а 11 0, то утверждение доказано. Если а 11 = 0, но, скажем а 22 0, то изменим нумерацию неизвестных:

x 1 = y 2, x 2 = y 1, x 3 = y 3, … xn = yn.

Матрица этого линейного преобразования имеет вид:

,

невырожденная, так ее определитель равен -1. В преобразованной квадратичной форме коэффициент при у отличен от нуля.

Пусть теперь коэффициенты при квадратах всех переменных равны нулю, но а 12 0. Тогда невырожденное линейное преобразование

приводит квадратичную форму к виду, в котором коэффициент при у отличен от нуля. Если же коэффициенты при квадратах всех переменных равны нулю и а 12 = 0, но 0, то изменив нумерацию переменных, сведем задачу к предыдущему случаю. ■

 

Квадратичная форма имеет канонический вид, если в ее записи нет слагаемых с произведениями неизвестных, т. е. .

 

Теорема. (Лагранжа). Любую квадратичную форму с помощью невырожденного линейного преобразования неизвестных можно привести к каноническому виду.

Доказательство. С помощью невырожденного линейного преобразования приведем квадратичную форму f к виду, в котором а 11 0. Все слагаемые, содержащие х 1, соберем в одну скобку и дополним эту скобку до полного квадрата, получим

,

где оставшиеся слагаемые образуют квадратичную форму g(x 2, …, xn) от неизвестных х 2, …, хn. Невырожденное линейное преобразование неизвестных

приводит квадратичную форму к виду

.

Повторив рассуждения, с учетом того, что последовательное выполнение невырожденных линейных преобразований вновь невырожденное линейное преобразование, получим утверждение теоремы. ■

 

Пример. Приведите с помощью невырожденного линейного преобразования неизвестных к каноническому виду квадратичную форму f = .

Линейное преобразование приводит квадратичную форму к виду А линейное преобразование приводит к виду . Найдем сквозное линейное преобразование . Оно невырожденное, так как определитель матрицы линейного преобразования

равен – 2, то оно невырожденное.

Ответ: невырожденное линейное преобразование неизвестных приводит форму к каноническому виду

Квадратичная форма с действительными коэффициентами имеет нормальный вид, если в ее записи нет слагаемых с произведениями неизвестных, а квадраты переменных входят с коэффициентами 1 или -1 или совсем не входят. После изменения нумерации переменных нормальный вид можно переписать так: вначале идут коэффициенты 1, затем -1, а затем нули,

.

 

Теорема. Любую квадратичную форму с помощью невырожденного линейного преобразования неизвестных можно привести к нормальному виду.

Доказательство. Ограничимся доказательством возможности преобразования канонического вида в нормальный вид с помощью невырожденного линейного преобразования:

, если ai > 0; , если ai < 0; , если ai = 0. ■


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)