АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Упражнения. 1) Докажите, что ортогональные матрицы одного порядка образуют мультипликативную группу

Читайте также:
  1. F. Расслабляющие упражнения
  2. I. СТРОЕВЫЕ УПРАЖНЕНИЯ
  3. АКРОБАТИЧЕСКИЕ УПРАЖНЕНИЯ
  4. АКРОБАТИЧЕСКИЕ УПРАЖНЕНИЯ
  5. Беговые упражнения
  6. Биоэнергетические упражнения по установлению связи с землей
  7. БРОСКОВЫЕ УПРАЖНЕНИЯ
  8. Вводные упражнения
  9. Вводные упражнения — вводные положения
  10. Вводные упражнения — вводные положения
  11. Вводные упражнения — вводные положения
  12. Враджана-пранаяма — дыхательные упражнения при ходьбе

 

1) Докажите, что ортогональные матрицы одного порядка образуют мультипликативную группу.

2) Пусть А – комплексная матрица. Матрица строения называется сопряженной по отношению к матрице А, если для всех i, j . Докажите свойства:

а) ;

б)

в) ; ;

г)

д) ;

е) если линейный оператор невырожден, то ;

ё) для любого целого неотрицательного m.

ж) для любого целого m, если матрица А невырожденная;

з) если f(t) = произвольный многочлен, то , где (х) = .

3) Матрица А называется нормальной, если Докажите, что в нормальной матрице скалярное произведение строк i и j равно скалярному произведению столбцов i и j.

4) Докажите, что в ортонормированном базисе унитарного пространства матрица нормального оператора нормальна. Обратно, нормальная матрица задает в ортонормированном базисе нормальный оператор.

5) Проверьте, что матрицы нормальные и для каждой найдите ортонормированный базис из собственных векторов

а) ; б) ; в) ; г) .

6) Матрица U называется унитарной, если Докажите, что матрица унитарна тогда и только тогда, когда все ее собственные значения по модулю равны единице.

7) Докажите, что унитарные матрицы одного порядка образуют мультипликативную группу.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)