|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Отношение порядка
Часто приходится сталкиваться с отношениями, которые определяют некоторый порядок расположения элементов множества. Т. е. во многих случаях можно расположить элементы множества А или группы элементов в некотором порядке или другими словами - ввести отношение порядка на множествах. Различают отношение нестрогого и строгого порядка. Отношением нестрогого порядка называют отношение, обладающее свойствами: Ø х £ х истинно (рефлексивность); Ø х £ у и у £ х Þ х=у (антисимметричность); Ø х £ у и у £ z Þ х £ z (транзитивность). Отношением строгого порядка называют отношение: Ø x < x ложно (антирефлексивность); Ø x < y и y < x взаимоисключается (несимметричность); Ø x < y и y < z Þ x < z транзитивность. Элементы а и b сравнимы по отношению порядка R, если выполняется условие аRb или bRa. Множество А, на котором задано отношение порядка R, называется полностью (линейно) упорядоченным, если любые два элемента А сравнимы, и частично упорядоченным в противном случае. Пример 1. Отношения “£”, “³” являются отношением нестрогого порядка (или просто отношением порядка), а отношения “<”, “>” являются отношением строгого порядка. Оба отношения полностью (линейно) упорядочивают множества чисел N, Z, R. Пример 2. Определим отношения “£” и “<” для n-элементных числовых кортежей следующим образом: (a1, a2, … an) £ (b1, b2, … bn), если a1£ b 1, a2£ b2, … an£ bn); (a1, a2, … an) < (b1, b2, … bn) если (a1, a2, … an) £ (b1, b2, … bn) и хотя бы для одной координаты выполнено условие ai < bi. Эти отношения определяют частичный порядок на множестве n-элементных кортежей (векторов) с числовыми координатами. Кортежи (5, 3, -2) < (5, 4, -2), a кортежи (5, 2, -3) и (5, 0, 0) не сравнимы. Пример 3. Система подмножеств множества А отношением включения частично упорядочена. Например, {1, 2}Ì {1, 2, 3}, a {1, 2} и {1, 3, 4} не сравнимы. Пример 4. Отношение подчиненности на предприятии задает строгий частичный порядок. В нем несравнимыми являются сотрудники разных подразделений. Пример 5. Пусть дан алфавит А=(а, б, …) Отношением предшествования этот алфавит полностью упорядочивается. Отношение предшествования обозначается знаком “<” (ai < aj, если ai предшествует aj в списке букв алфавита). На основе отношения предшествования букв строится отношение предшествования слов, определяемое следующим образом: Пусть даны слова a1 = а11, а12, …а1m, a2 = a21, a22, … a2m. Тогда a1 < a2 если и только если либо: 1). - некоторые слова, возможно пустые; - буквы); 2). , где b - непустое слово (Например, a1 – слово “стол”, а a2 – “столовая”, тогда b - слово “овая”). Это отношение задает полное упорядочение множества всех конечных слов в алфавите А, которое называется лексикографическим упорядочением слов. Заметим, что под словом здесь понимается любая последовательность букв, записанных рядом, возможно, пустая. Лексикографическое упорядочение дат от ранних к поздним требует следующей их записи: сначала год, потом месяц, затем число месяца. Например, 99.01.01. На множестве А может задаваться несколько отношений Ri, iÎI, включая и эмпирические отношения и отношения операции. Примерами эмпирических отношений являются отношения доминирования, предпочтения, сравнения по любым признакам. Примерами отношений, задаваемых с помощью операций, являются алгебраические операции сложения, умножения и т. п. Между элементами множества А имеет место доминирования, если эти элементы обладают свойствами: Ø никакой элемент не может доминировать над самим собой, т.е. х>>х ложно (антирефлексивность); Ø x>>y и y>>x взаимоисключается (несимметричность); Ø транзитивность исключается. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |