|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Отношение порядка и отношение эквивалентности на графе
Граф дает удобное геометрическое представление отношений на множестве, поэтому теория графов и теория отношений на множестве взаимно дополняют друг друга. На графе G=(X, Г) введено отношение порядка, если для любых двух вершин (х и y), удовлетворяющих условию Данное определение отражает на графе все свойства отношения порядка. Рефлексивность. Условие
означает эквивалентность вершины самой себе, т.е. условие Транзитивность. Условие
означает, что вершины х, у, z последовательно встречаются на одном и том же пути (рис. 2.11 б). Антисимметричность.
Левая часть этого выражения говорит о том, что существует путь из х в у, а так же существует путь из у в х. Но это означает, что в графе имеется контур, на котором лежат вершины х и у (рис.2.11 в). Из правой части условия 2.14 вытекает, что вершины, лежащие на одном и том же контуре, являются эквивалентными. Будем рассматривать этот вывод как определение эквивалентности на графе и покажем, что такое определение удовлетворяет всем трем условиям отношения эквивалентности. Условия рефлексивности Таким образом, отношение порядка совместно с отношением эквивалентности определяет некоторый граф. На графе может быть так же введено отношение строгого порядка. В этом случае для любых двух вершин (х и у), удовлетворяющих условию x<y, существует путь, идущий из х в у. Условие транзитивности Таким образом, отношение строгого порядка определяет граф без контуров.
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.063 сек.) |