|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Матрица достижимостейВершина графа называется достижимой из вершины того же графа, если существует по крайней мере один путь из в . Множество вершин R(vi), достижимых из некоторой вершины , определяется следующим выражением: 2.9 Действительно, первым элементом множества является вершина , которая достижима из себя самой с помощью пути длины нуль; Г(vi) – множество вершин vj, достижимых из vi с использованием путей длины единица; Г2(vi) – множество вершин, достижимых из vi с использованием путей длины два; - множество вершин, достижимых из vi с использованием путей длины p. Таким образом, множество R(vi) получается путем последовательного выполнения слева направо операции объединения в выражении (2.9) до тех пор, пока мощность текущего множества не перестанет увеличиваться при очередной операции объединения. С этого момента последующие операции объединения не будут давать новых элементов множеству R(vi). Число объединений, которые необходимо выполнить, зависит от графа G. Но если граф конечен, то p<n, где n – число вершин графа. Матрицей достижимостей называется квадратная матрица порядка n, элемент которой Пример. Построить матрицу достижимостей графа G, представленного на рис. 2.6.
Рис. 2.6 Решение. X={x1, x2, x3, x4}; Г(х1)={x2}; Г(х2)={x3}; Г(х3)={x4}; Г(х4)={x3}. ; ; ; . Следовательно, матрица достижимостей имеет вид: . Очевидно, что элементы di,i=1, i=1, 2, …, n, так как каждая вершина достижима из себя самой.
Матрица контрдостижимостей (обратных достижимостей) определяется следующим образом: 2.10 где Q(vi) – множество таких вершин viÎV, что из любой вершины этого множества можно достигнуть вершину vi: 2.11 где - множество вершин, из которых достижима вершина vi с использованием пути длины единица; ) – множество вершин, из которых достижима вершина vi с использованием пути длины два и т.д. Операция объединения в выражении (2.10) выполняется слева направо до тех пор, пока очередное объединение не перестанет изменять “текущее множество”. Пример. Построить матрицу контрдостижимостей Q для графа G рис. 2.6. Решение. Матрица контрдостижимостей будет иметь вид: . Из определения матриц D и Q следует, что Q=DT. Так как D(vi) является множеством вершин, достижимых из , а Q(vj) – множество вершин, из которых достижима вершина vj, то D(vi) - множество таких вершин, каждая из которых принадлежит по крайней мере одному пути, идущему от vi к vj. Эти вершины называются существенными (неотъемлемыми) относительно двух концевых вершин vi и vj. Вершины называются несущественными (избыточными), так как их удаление не влияет на пути от vi к vj.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |