|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Выбор интервала данныхПри использовании данных из групп 2-3 (см. параграф «Данные для прогнозирования») при прочих равных лучше выбирать настолько длинный интервал данных, насколько это возможно. А в случае если спрос на вашу продукцию подвержен серьезным колебаниям, рекомендуется использовать как минимум двухлетний интервал. Например, практически для любых продуктов бесполезно прогнозировать объем продаж в январе на основе результатов продаж за предыдущие шесть месяцев — до декабря традиционно идет подъем, а в январе неминуемо настанет спад, так как вся страна почти полмесяца не будет работать. С другой стороны, понятно, что при прогнозировании объема продаж на 1999 г. было бы бессмысленно использовать данные о продажах по России в 1998 г., так как в то время произошел кризис, заметно повлиявший на спрос на товары. Аналогичная ситуация может возникнуть и в вашей компании, если, например: ♦ вы резко изменили технологию продаж, отказавшись от работы ♦ вы значительно изменили число людей, занимающихся продажа ♦ у вас появился серьезный конкурент, который отвоевал часть ва Во всех этих случаях нельзя говорить, что вы всегда можете использовать данные только с момента последнего серьезного изменения. Иногда данные можно подкорректировать, чтобы изменения были нивелированы (например, вычесть из объемов продаж за прошлые периоды продажи тем клиентам, которые сейчас перешли к вашему конкуренту), или строить прогноз на основе только части данных, а полученные результаты применять ко всем (например, вы прогнозируете 150_______________________________________________ Управление продажами по одной группе товаров, но предполагаете, что полученная тенденция изменения объема продаж будет верна и для других групп). В любом случае необходимо точно обосновать, почему именно такой интервал данных используется для прогнозирования, — это поможет намного точнее проинтерпретировать полученные результаты. Выбор метода прогнозирования В параграфе «Данные для прогнозирования» мы определили четыре группы исходных данных, на основе которых можно строить прогноз. Выбор конкретного метода прогнозирования из множества существующих (наиболее распространенные из которых мы описали в предыдущей главе) будет зависеть не только от цели прогноза, но и от вида данных, на которые он будет опираться. Важно помнить, что исходные данные — это фундамент прогноза, и от корректности их выбора зависит, будет ваш прогноз по надежности напоминать пирамиду Хеопса или Пизанскую башню. Прогнозирование на основе экспертных данных Важно помнить, что при использовании экспертных данных имеет смысл оценивать только продажи на ближайший период. То есть, например, прогнозировать объем продаж на следующий месяц. Экспертные оценки объема продаж «через месяц-два», как правило, будут намного менее точны, чем полученные на основе анализа объективных данных, так как большинство людей при прогнозировании на длительный срок — тот, «который еще не скоро», — начинают чересчур творчески подходить к такой работе. В результате оптимисты оценки завышают, пессимисты — занижают, причем величину ошибки предсказать почти невозможно. Один из методов обработки экспертных данных уже рассматривался в предыдущей главе. Его можно аналогично использовать и для обработки экспертных оценок объемов продаж в ближайшем периоде. Иногда удается улучшить эту процедуру, если собирать от каждого эксперта (в том случае, если все они — сотрудники вашей компании) прогнозы объемов продаж по тому направлению, за которое он отвечает. То есть менеджер по продажам дает оценки своего объема продаж, руководитель группы продавцов — оценки объема продаж группы, менеджер продукта — оценки объема продаж своего продукта и т. п. Обработав полученные таким образом прогнозы продаж, можно вывести довольно достоверные оценки. Глава 9. Прогнозирование продаж Прогнозирование на основе данных о результатах процессов Методы прогнозирования на основе данных об объемах продаж в прошлых периодах описаны во многих учебниках и автоматизированы в большинстве компьютерных программ, имеющих отношение к продажам, маркетингу или планированию. При применении таких методов основное внимание стоит уделить: ♦ сути применяемого метода — на каких предпосылках (ограниче ♦ корректности используемых данных; ♦ наличию сезонных колебаний в объеме продаж. Если есть такая возможность, стоит обязательно проверить точность метода, попробовав спрогнозировать с его помощью известный вам объем продаж последнего периода на основе предыдущих данных. Не стоит сразу «браковать» метод, если результаты окажутся неудовлетворительными, — вполне возможно, что вы просто не до конца в нем разобрались. Также особенно аккуратно следует относиться к результатам прогнозирования по данному методу, если в объеме продаж вашей компании явно прослеживается быстрый рост или спад. Если рост объясняется тем, что вы обнаружили несколько новых сегментов клиентов, а спад — проблемами с производством, но в ближайшее время аналогичных «событий» не предвидится, то скорее всего и объем продаж прекратит быстро изменяться. Это может быть очевидно для вас, но вряд ли будет «очевидно» для применяемого метода, так как он использует для прогнозирования просто цифры, не имея представления об их экономической сути. Прогнозирование на основе данных о показателях процессов В предыдущих главах мы рассмотрели несколько методов, в которых используются показатели процессов продаж (количество процессов на разных этапах, вероятность закрытия процесса успехом, оценка результата процесса, оценка срока завершения процесса) для прогнозирования их результатов. Что касается «воронки продаж» и ее модификаций, то их основная задача — управлять объемом продаж для достижения запланированных показателей, а не прогнозировать его. То есть цель — не оценить возможный объем продаж, а получить информацию о том, какие управленческие воздействия надо произвести, чтобы реальный объем продаж с большей вероятностью совпал с запланированным. 152_______________________________________________ Управление продажами Метод прогнозирования на основе вероятностей, описанный в параграфе «Прогноз продаж на основе вероятности», является смешанным — он использует и объективные данные о процессах, и экспертные оценки вероятностей их успеха. Этот метод широко используется, и при наличии достаточного желания он может начать давать достаточно точные оценки. Помимо этого, информация о показателях может быть использована и для более сложных методов прогнозирования, которые основываются на эконометрических моделях. Очевидно, что количество процессов на определенном этапе так или иначе влияет на объем продаж, но то же можно сказать и про количество закрытых за месяц определенных этапов, среднюю длительность различных этапов, среднюю длительность этапов и процессов по разным группам продуктов, по клиентам из разных сегментов и т. п. Характер влияния никогда нельзя узнать точно, более того, часто нельзя даже просто уверенно утверждать, есть ли значимое влияние или нет, но иногда с помощью математических методов анализа его можно выявить. Последние методы прогнозирования — это методы будущего. Пока их использование сильно ограничено отсутствием как необходимой информации, так и необходимых знаний у тех, кто занимается прогнозированием. Тем не менее в научной среде такие подходы уже начинают использоваться, а значит, лет через 20 они станут широко распространенными и в бизнес-среде. Прогнозирование на основе данных из четвертой группы может осуществляться по принципам, описанным в параграфах «Прогнозирование на основе экспертных данных» и «Прогнозирование на основе данных о результатах процессов». В любом случае надо помнить, что лучший метод прогнозирования — это тот, содержание которого вы прекрасно понимаете и который уже подтвердил свое качество несколько раз. Если вы еще не нашли такой метод, то стоит, кроме всего, пройти обучение на курсах, предлагаемых производителями программного обеспечения, которое используется для прогнозирования. В этом случае вы не только получите знания о методах прогнозирования, но и познакомитесь с удобными инструментами реализации этих методов. | Хотите знать больше? О Статистический портал StatSoft (http://www.statsoft.ru/home/portal). Данный портал создан и поддерживается Московским представительством компании StaSoft Inc. — одного из наиболее известных в мире произ- Глава 9. Прогнозирование продаж_____________________________________ 153 водителей программного обеспечения для статистического анализа данных. На нем вы найдете разнообразные примеры анализа данных, статьи и даже электронный учебник по статистике. О Сигел Э. Практическая бизнес-статистика. — М.: Вильяме, 2002. Великолепно написанный учебник по статистике, ориентированный на решение бизнес-задач. Минимум «научности», максимум «практичности». Кроме описания статистических методов, много внимания уделяется использованию полученных результатов для принятия управленческих решений. О Айвазян С. А., Мхитарян В. С. Прикладная статистика и основы эконометрики. Учебник для вузов. — М.: Юнити, 1998. Это самый известный российский учебник, ориентированный на двухсе-местровый курс по эконометрике. Он содержит большинство известных моделей, которые могут применяться для анализа экономических данных, и много практических примеров. Именно по этому учебнику проходят эконометрику в большинстве российских вузов. Разумеется, тратить время на прогнозирование нужно только в том случае, если вы четко понимаете, как эти данные будете в дальнейшем использовать. Точное определение объемов продаж позволит вам повысить эффективность работы всех подразделений компании, о взаимодействии с которыми мы поговорим в следующей главе. Глава 10 Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |