АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Методы исключения интервалов

Читайте также:
  1. II. Методы непрямого остеосинтеза.
  2. II. Рыночные методы.
  3. III. Методы искусственной физико-химической детоксикации.
  4. III. Параметрические методы.
  5. IV. Современные методы синтеза неорганических материалов с заданной структурой
  6. А. Механические методы
  7. Автоматизированные методы
  8. Автоматизированные методы анализа устной речи
  9. Адаптивные методы прогнозирования
  10. Административно-правовые методы государственного управления
  11. Административно-правовые методы государственного управления
  12. АДМИНИСТРАТИВНО-ПРАВОВЫЕ МЕТОДЫ УПРАВЛЕНИЯ

В разд. 2.2 рассматривался вопрос анализа "в статике", который заключается в том, чтобы определить, является ли данное решение оптимальным. Для этого были построены необходимые и достаточные условия оптимальности решения. Далее мы переходим к изучению вопроса анализа "в динамике", связанного с нахождением оп­тимального решения. С этой целью ниже рассматривается ряд одномерных методов поиска, ориентированных на нахождение точки оптимума внутри заданного интервала. Методы поиска, которые позволяют определить оптимум функции одной переменной путем последовательного исключения подынтервалов и, следовательно, путем уменьшения интервала поиска, носят название методов исключения интервалов.

В разд. 2.1 было дано определение унимодальной функции. Унимодальность функций является исключительно важным свойством. Фактически все одномерные методы поиска, используемые на прак­тике, основаны на предположении, что исследуемая функция в допустимой области, по крайней мере, обладает свойством унимодальности. Полезность этого свойства определяется тем фактом, что для унимодальной функции f(x) сравнение значений f(x) в двух различных точках интервала поиска позволяет определить, в каком из заданных двумя указанными точками подынтервалов точка оптимума отсутствует.

Теорема 2.3

Пусть функция f унимодальна на замкнутом интервале а£х£b, а ее минимум достигается в точке х*. Рассмотрим точки х1 и х2,. расположенные в интервале таким образом, что а<х12<b. Сравнивая значения функции в точках х1 и х2 можно сделать следующие выводы.

1. Если , то точка минимума f(x) не лежит в интервале (), т. е. (рис. 2.10).

2. Если , то точка минимума не лежит в интервале (), т. е. (см. рис. 2.10).


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)