|
|||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Сравнение методов исключения интерваловНиже проводится сравнение относительных эффективностей рассмотренных методов исключения интервалов. Обозначим длину исходного интервала неопределенности через , а длину интервала, получаемого в результате N вычислений значений функции,— через . В качестве показателя эффективности того или иного метода исключения интервалов введем в рассмотрение характеристику относительного уменьшения исходного интервала . Напомним, что при использовании метода деления интервала пополам и метода золотого сечения длина получаемого интервала составляет и соответственно. Следовательно, относительное уменьшение интервала после N вычислений значений функции равно
Для сравнения рассмотрим также метод равномерного поиска, в соответствии с которым оценивание функции проводится в N равноотстоящих друг от друга точках (при этом интервал Li делится на (N+1) равных интервалов длины ). Пусть х* - точка, в которой наблюдается минимум функции . Тогда точка истинного минимума f(x) оказывается заключенной в интервале откуда . Следовательно, для метода равномерного поиска . В табл. 2.1 представлены значения FR (N), соответствующие выранным N, для трех методов поиска. Таблица 2.1. Величины относительного уменьшения интервала
Из таблицы следует, что поиск с помощью метода золотого сечения обеспечивает наибольшее относительное уменьшение исходного интервала при одном и том же количестве вычислений значений функции. С другой стороны, можно также сравнить количества вычислений значения функции, требуемые для достижения заданной величины относительного уменьшения интервала или заданной степени точности. Если величина задана, то значение N вычисляется по следующим формулам: для метода деления интервала пополам , для метода золотого сечения б для метода равномерного поиска . В табл. 2.2 приведены данные о количествах вычислений значений функции, необходимых для определения координаты точки минимума с заданной точностью. Таблица 2.2. Требуемые количества вычислений значений функции
Следует еще раз подчеркнуть, что метод золотого сечения оказывается более эффективным по сравнению с остальными двумя методами, поскольку он требует наименьшего числа оцениваний значения функции для достижения одной и той же заданной точности. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |