|
|||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Сравнение методов исключения интерваловНиже проводится сравнение относительных эффективностей рассмотренных методов исключения интервалов. Обозначим длину исходного интервала неопределенности через
Для сравнения рассмотрим также метод равномерного поиска, в соответствии с которым оценивание функции проводится в N равноотстоящих друг от друга точках (при этом интервал Li делится на (N+1) равных интервалов длины откуда
В табл. 2.1 представлены значения FR (N), соответствующие выранным N, для трех методов поиска. Таблица 2.1. Величины относительного уменьшения интервала
Из таблицы следует, что поиск с помощью метода золотого сечения обеспечивает наибольшее относительное уменьшение исходного интервала при одном и том же количестве вычислений значений функции. С другой стороны, можно также сравнить количества вычислений значения функции, требуемые для достижения заданной величины относительного уменьшения интервала или заданной степени точности. Если величина для метода деления интервала пополам
для метода золотого сечения
для метода равномерного поиска
В табл. 2.2 приведены данные о количествах вычислений значений функции, необходимых для определения координаты точки минимума с заданной точностью. Таблица 2.2. Требуемые количества вычислений значений функции
Следует еще раз подчеркнуть, что метод золотого сечения оказывается более эффективным по сравнению с остальными двумя методами, поскольку он требует наименьшего числа оцениваний значения функции для достижения одной и той же заданной точности. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |