АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Метод секущих (хорд)

Читайте также:
  1. F. Метод, основанный на использовании свойства монотонности показательной функции .
  2. FAST (Методика быстрого анализа решения)
  3. I этап Подготовка к развитию грудобрюшного типа дыхания по традиционной методике
  4. I. 2.1. Графический метод решения задачи ЛП
  5. I. 3.2. Двойственный симплекс-метод.
  6. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  7. I. Метод рассмотрения остатков от деления.
  8. I. Методические основы
  9. I. Методические основы оценки эффективности инвестиционных проектов
  10. I. Организационно-методический раздел
  11. I. Предмет и метод теоретической экономики
  12. I. Что изучает экономика. Предмет и метод экономики.

Метод секущих, являющийся комбинацией метода Ньютона и общей схемы исключения интервалов, ориентирован на нахождение корня уравнения в интервале (а, b), если, разумеется, такой корень существует.

Рис. 2.15. Метод секущих

Предположим, что в процессе поиска стационарной точки функции f(x) в интервале (а, b) обнаружены две точки L и R, в которых знаки производной различны. В этом случае алгоритм метода секущих позволяет аппроксимировать функцию f'(x) «секущей прямой» (прямой линией, соединяющей две точки) и найти точку, в которой секущая графика f'(x) пересекаетось абсцисс (Рис. 2.15). Таким образом, следующее приближение к стационарной точке определяется по формуле

Если , поиск следует закончить. В противном случае необходимо выбрать одну из точек L или R таким образом, чтобы знаки производной в этой точке и точке z были различны, а затем повторить основной шаг алгоритма. Например, в ситуации, изображенной на Рис. 2.15, в качестве двух следующих точек должны быть выбраны точки z и R. Легко видеть, что в отличие от метода средней точки метод секущих основан на исследовании не только знака, но и значений производной в пробных точках и поэтому в ряде случаев позволяет исключить более половины интервала поиска (см. Рис. 2.15).

Пример 2.7

Минимизировать функцию в интервале , используя Метод секущих

Итерация 1.

Шаг 1. .

Шаг 2

Шаг 3. ; положить R=2.53.

Итерация 2.

Шаг 2

Шаг 3. ; положить R= 1.94.

Итерации продолжаются до тех пор, пока не будет выполняться неравенство .


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)