|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Метод поиска с использованием кубичной аппроксимацииВ соответствии с рассматриваемым методом подлежащая минимизации функция f аппроксимируется полиномом третьего порядка. Логическая схема метода аналогична схеме методов с использованием квадратичной аппроксимации. Однако в данном случае построение аппроксимирующего полинома проводится на основе меньшего числа точек, поскольку в каждой точке можно вычислять значения как функции, так и ее производной. Работа алгоритма начинается в произвольно выбранной точке Параметры уравнения (2.8) подбираются таким образом, чтобы значения Коэффициенты Заметим, что данная система легко решается рекурсивным методом. После того как коэффициенты найдены, действуя по аналогии со случаем квадратичной аппроксимации, можно оценить координату стационарной точки функции / с помощью аппроксимирующего полинома (2.8). При этом приравнивание к нулю производной (2.9) приводит к квадратному уравнению. Используя формулу для вычисления корней квадратного уравнения, запишем решение, определяющее стационарную точку аппроксимирующего кубичного полинома, в следующем виде: где Формула для Приведем формализованное описание алгоритма. Пусть заданы начальная точка Шаг 1. Вычислить Если Если Шаг 2. Вычислить значения Шаг 3. Найти стационарную точку Шаг 4. Если Шаг 5. Проверка на окончание поиска. Если либо затем перейти к шагу 3. Заметим, что шаги 1 и 2 реализуют процедуру поиска границ интервала по эвристическому методу, причем изменение знака производной используется в качестве критерия перехода через точку оптимума. На шаге 3 проводятся вычисления координаты точки оптимума аппроксимирующего полинома. Шаг 4 ассоциирован с проверкой того факта, что полученная оценка действительно является улучшенным приближением к точке оптимума. В случае, когда значения производной вычисляются непосредственно, метод поиска с использованием кубичной аппроксимации, безусловно, оказывается более эффективным по сравнению с любым из представленных выше методов поиска. Однако если значения производной вычисляется путем разностного дифференцирования, то предпочтение следует отдать методу Пауэлла, основанному на квадратичной аппроксимации. Пример 2.8 Минимизировать функцию Итерация 1. Шаг 1. Шаг 2. Так как Шаг 3. Шаг 4. Шаг 5. Проверка на окончание поиска.
Итерация 2. Шаг 3 Шаг 4. Шаг 5. Проверка на окончание поиска: Поиск закончен. Заметим, что при тех же самых исходных точках Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |