|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Выпуклое программирование. Задача выпуклого программированияОпределение: Функция , заданная на выпуклом множестве X, называется выпуклой, если для любых двух точек и из X и любого выполняется соотношение (4) Определение: Функция , заданная на выпуклом множестве X, называется вогнутой, если для любых двух точек и из X и любого выполняется соотношение (5) Если неравенства (4) и (5) считать строгими и они выполняются при , то функция является строго выпуклой (строго вогнутой). Выпуклость и вогнутость функций определяется только относительно выпуклых множеств. Если , где , - выпуклые (вогнутые) функции на некотором выпуклом множестве , то функция f(x) - также выпуклая (вогнутая) на X. Основные свойства выпуклых и вогнутых функций: 1. Множество точек минимума выпуклой функции, заданной на выпуклом множестве, - выпукло. 2. Пусть f(x) - выпуклая функция, заданная на замкнутом выпуклом множестве . Тогда локальный минимум f(x) на X является и глобальным. 3. Если глобальный минимум достигается в двух различных точках, то он достигается и в любой точке отрезка, соединяющего данные точки. 4. Если - строго выпуклая функция, то ее глобальный минимум на выпуклом множестве X достигается в единственной точке. 5. Пусть функция f(x) - выпуклая функция, заданная на выпуклом множестве X, и, кроме того, она непрерывна вместе со своими частными производными первого порядка во всех внутренних точках X. Пусть - точка, в которой . Тогда в точке достигается локальный минимум, совпадающий с глобальным минимумом. 6. Множество точек глобальных (следовательно, и локальных) минимумов выпуклой функции , заданной на ограниченном замкнутом выпуклом множестве X, включает хотя бы одну крайнюю точку; если множество локальных минимумов включает в себя хотя бы одну внутреннюю точку множества X, то является функцией-константой. Рассмотрим задачу нелинейного программирования (6) при ограничениях , (7) . (8) Для решения сформулированной задачи в такой общей постановке не существует универсальных методов. Однако для отдельных классов задач, в которых сделаны дополнительные ограничения относительно свойств функций f(x) и , разработаны эффективные методы их решения. Говорят, что множество допустимых решений задачи (6) - (8) удовлетворяет условию регулярности, или условию Слейтера, если существует, по крайней мере, одна точка , принадлежащая области допустимых решений такая, что . Задача (6) - (8) называется задачей выпуклого программирования, если функция является вогнутой (выпуклой), а функции - выпуклыми. Функцией Лагранжа задачи выпуклого программирования (6) - (8) называется функция , где - множители Лагранжа. Точка называется седловой точкой функции Лагранжа, если для всех и . Теорема (Куна - Таккера): Для задачи выпуклого программирования (6) - (8), множество допустимых решений которой обладает свойством регулярности, является оптимальным решением тогда и только тогда, когда существует такой вектор , что - седловая точка функции Лагранжа. Если предположить, что функции f и непрерывно дифференцируемы, то теорема Куна - Таккера может быть дополнена аналитическими выражениями, определяющими необходимые и достаточные условия того, чтобы точка была седловой точкой функции Лагранжа, т. е. являлась решением задачи выпуклого программирования: где и значения соответствующих частных производных функции Лагранжа, вычисленных в седловой точке.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |