АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция
|
Матрица графов
Граф может быть задан разными способами: рисунком, перечислением вершин и ребер (или дуг) и т. д. Одним из самых удобных способов является задание графа с помощью матрицы. Пусть некоторый граф G имеет п вершин и т ребер . Построим матрицу, имеющую п строк и т столбцов. Каждая строка матрицы будет соответствовать вершине, а столбец - ребру графа. В столбце все элементы, кроме двух, будут равны нулю. Для ориентированного графа в строке, соответствующей начальной вершине дуги , ставят число +1, а в строке, соответствующей конечной вершине, - число -1. Для неориентированного графа в строках матрицы, соответствующих концевым вершинам ребра , ставят 1, а в остальных строках - 0. Построенные матрицы называются матрицами инциденций графа.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | Поиск по сайту:
|