АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Принцип оптимальности. Уравнение Беллмана

Читайте также:
  1. B. Основные принципы исследования истории этических учений
  2. E) Для фиксированного предложения денег количественное уравнение отражает прямую взаимосвязь между уровнем цен Р и выпуском продукции Y.
  3. ERP-стандарты и Стандарты Качества как инструменты реализации принципа «Непрерывного улучшения»
  4. I Психологические принципы, задачи и функции социальной работы
  5. I. Сестринский процесс при гипертонической болезни: определение, этиология, клиника. Принципы лечения и уход за пациентами, профилактика.
  6. I. Сестринский процесс при диффузном токсическом зобе: определение, этиология, патогенез, клиника. Принципы лечения и ухода за пациентами
  7. I. Сестринский процесс при остром лейкозе. Определение, этиология, клиника, картина крови. Принципы лечения и ухода за пациентами.
  8. I. Сестринский процесс при пневмонии. Определение, этиология, патогенез, клиника. Принципы лечения и ухода за пациентом.
  9. I. Сестринский процесс при хроническом бронхите: определение, этиология, клиника. Принципы лечения и уход за пациентами.
  10. I. Сестринский процесс при хроническом гепатите: определение, этиология клиника. Принципы лечения и ухода за пациентами. Роль м/с в профилактике гепатитов.
  11. I. Структурные принципы
  12. II. Принципы процесса

Метод динамического программирования состоит в том, что оптимальное управление строится постепенно. На каждом шаге оптимизируется управление только этого шага. Вместе с тем на каждом шаге управление выбирается с учётом последствий, так как управление, оптимизирующее целевую функцию только для данного шага, может привести к неоптимальному эффекту всего процесса. Управление на каждом шаге должно быть оптимальным с точки зрения процесса в целом. Это основное правило динамического программирования, сформулированное Беллманом, называется принципом оптимальности.

Итак, каково бы не было начальное состояние системы перед очередным шагом, управления на этом этапе выбирается так, чтобы выигрыш на данном шаге плюс оптимальный выигрыш на всех последующих шагах был оптимальным.

Так, если система в начале k - шага находится в состоянии и мы выбираем произвольное управление , то она придет в новое состояние в , и последующие управления должны выбираться оптимальными относительно состояния . Последнее, означает, что этих управлениях максимизируется величина , то есть показатель эффективности на последующих до конца процесса шагах . Обозначим через .

Выбрав оптимальное управление на оставшихся шагах, получим величину , которая зависит только от , то есть .

Назовем величину условным максимумом. Еслимы теперь выберем на k -м шаге некоторое произвольное управление , то система придет в состояние . Согласно принципу оптимальности, необходимо выбирать управление так, чтобы оно в совокупности с оптимальным управлением на последующих шагах (начиная с (k+1)-го) приводило бы к общему показателю эффективности на шагах, начиная с k -uго и до конца. Это положение в аналитической форме можно записать в виде следующего соотношения:

,

, (1)

получившего название основного функционального уравнения динамического программирования, или основного рекуррентного уравнения Беллмана.

Из уравнения (1) может быть получена функция , если известно функция . Аналогично можно получить , если известно и т. д., пока не будет определена величина , представляющая по определению максимальное значение показателя эффективности процесса в целом:

.

Решая уравнение (1) для определения условного максимума показателя эффективности за шагов, начиная с k -го, мы определяем соответствующее оптимальное управление , при котором этот максимум достигается. Это управление также зависит от ; будем обозначать его через и называть условным оптимальным управлением на k -м шаге. Основное значение уравнения (1), в котором реализована идея динамического программирования, заключается в том, что решение исходной задачи определения максимума функции n переменных сводится к решению последовательности n задач, задаваемых соотношениями (1), каждое из которых является задачей максимизации функции одной переменной .

В результате последовательного решения п частных задач на условный максимум определяют две последовательности функций: - условные максимумы и соответствующие им - условные оптимальные управления. Указанные последовательности функций в дискретных задачах получают в табличной форме, а в непрерывных моделях - аналитически. По­сле выполнения первого этапа (условной оптимизации) приступают ко второму этапу - безусловной оптимизации.

Если начальное состояние задано , то непосредственно определяют максимум целевой функции , а затем - искомое безусловное оптимальное управление по цепочке

. (2)

Если задано множество начальных состояний , то дополнительно решают еще одну задачу на максимум , откуда находят , а затем по цепочке (2) - безусловное оптимальное управление.

В рассмотренных рекуррентных соотношениях предписывают начи­нать вычисления с последнего этапа и затем передвигаться назад до этапа 1. Такой метод вычислений известен как алгоритм обратной прогонки. Если расчеты осуществляются в естественном порядке следования этапов, то та­кой метод вычислений известен как алгоритм прямой прогонки.

Приведем рекуррентные соотношения для этого случая. Уравнения со­стояний для прямого хода удобно записывать в виде .

Введем в рассмотрение условные максимумы показателя эффективности за k шагов, от 1-го до k- говключительно, - величину . Повторив приве­денные рассуждения, придем к следующей системе уравнений Беллмана:

;

.

В результате решения этих уравнений получим последовательности

; .

Далее определим безусловное оптимальное управление по цепочке

.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)