АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция
|
Определитель 1-го, 2-го и третьего порядков. Правило Саррюса и «звёздочки»
Определителем матрицы называется некоторая математическая функция элементов квадратной матрицы, результатом которой является число. Обозначение: — определитель 3- го порядка (т.к. матрица размера 3 на 3) матрицы А. Замечание: В этом, якобы простом, определении определителя (звучит как тавтология) говориться, что с элементами матрицы нужно что то сделать (умножить, сложить, разделить и т.д.) и получится значение определителя этой матрицы. Однако не сказано. Что же все-таки надо с ними сделать.
Вычисление определителей первого порядка. Матрица размера это просто число. Определителем такой матрицы является само это число. Вычисление определителей второго порядка. Определитель второго порядка (матрицы размера 2 на 2) вычисляется по правилу: Запомнить просто: произведение элементов, стоящих на главной диагонали, минус произведение элементов, стоящих на побочной. Пример: .
Вычисление определителей третьего порядка. Определитель третьего порядка вычисляется по правилу: Запомнить порядок сомножителей, конечно же, очень трудно, если не знать визуального представления этого правила, которое называется правило треугольников: Правило Саррюса
Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком "плюс"; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком "минус":
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | Поиск по сайту:
|