|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Общее уравнение прямой. Уравнение прямой в отрезках
Пусть задана некоторая афинная система координат OXY. Теорема 2.1. Любая прямая l системе координат ОX задается линейным уравнением вида
А x + B y + С = О, (1)
где А, В, С Уравнение вида (1) - общее уравнение прямой. Пусть в уравнении (1) все коэффициенты А, В и С отличны от нуля. Тогда
-Ах-By=-С, и Обозначим -С/А=а, -С/B=b. Получим
- уравнение в отрезках. Действительно, числа |а| и |b| указывают на величины отрезков, отсекаемых прямой l на осях ОХ и OY соответственно. Пусть прямая l задана общим уравнением (1) в прямоугольной системе координат и пусть точки M1(x1,у1) и М2(х2,у2) принадлежит l. Тогда А x 1 + В у 1 + С = А х 2 + В у 2 + С, то есть A(x 1- x 2) + В(у 1- у 2) = 0. Последнее равенство означает, что вектор
a'13=a13cosφ+a23cosφ a'23=a23cosφ-a13sinφ a'33=a33 (4) Вывод: старшие коэффициенты а'11, а'12 и а'22, выражаются только через угол φ старшие коэффициенты а11, а12 и а22. Коэффициенты а'13 и а'23 выражаются только через угол φ и коэффициенты а13, а23. Коэффициенты а'33 и а33 равны. Для упрощения равенств (4) введем следующие обозначения:
Тогда
если А
Тогда уравнение (*) примет вид:
Вывод: при параллельном переносе системы координат, коэффициенты группы старших членов не изменяются, а коэффициенты линейной части изменяются по формулам (2). Применим формулы поворота системы ОХУ на угол φ т.е.
х=х'соsφ-y'sinφ;
y=x'sinφ+y'cosφ; Получим:
Тогда в новой системе координат, уравнение (1) примет вид:
где
Рассмотрим вектор
Следовательно, вектор
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.) |