Линии параболического типа
Пусть КВП задана уравнением вида (1) и является кривой
параболического типа, т.е. I2=О. Тогда I1 О. Действительно,
если I1=а11+a22=О, то I12=а112+а222+2a11a22=О, т.е.
(*)
тантами. Если упорядоченная тройка векторов , , является правой, то афинную систему называют правой, в противном случае - левой. В дальнейшем под афинной системой будем понимать правую систему. Если базисные векторы , , попарно взаимно ортогональны, то афинная система координат называется декартовой (прямоугольной), а базисные векторы обозначается соответственно .
В частности, если даны точки А (х 1, у 1, z 1), В (х 2, у 2, z 2), то
Векторы = (х1,у1,z1) и = (х2,у2,z2) коллинеарны тогда и только тогда, когда их соответствующие координаты пропорциональны, т.е.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | Поиск по сайту:
|