Координаты на прямой
Прямая l, на которой задана точка 0, называемая началомкоординат, задан единичный вектор , называемый ортом, называется координатнойосью.
Пусть М - произвольная точка прямой. Тогда вектор кол-
– пара параллельных прямых: и
Если же а"33/I1>0, то уравнению (31) не удовлетворяют
координаты ни одной точки плоскости, т.е. геометрический образ является мнимым. Поэтому и говорят, что в атом случае получаем пару мнимых параллельных прямых. Теорема доказана.
VI ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | Поиск по сайту:
|