АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Взаимное расположение прямой и плоскости

Читайте также:
  1. III Угол между прямой и плоскостью.
  2. Акты, протоколы. Состав реквизитов акта и протокола. Расположение реквизитов на бланке А4. Требования к оформлению акта и протокола. Придание документу юридической силы.
  3. БЛАГОРАСПОЛОЖЕНИЕ К ПРИЯТНОМУ СВЯЗАНО С ИНТЕРЕСОМ
  4. Взаимное влияние политики и морали в истории.
  5. Взаимное ориентирование.
  6. Взаимное положение двух плоскостей
  7. Взаимное положение двух прямых в пространстве
  8. Взаимное положение прямой линии и плоскости
  9. ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПОВЕРХНОСТЕЙ ОГРАНИЧЕНИЯ ПРЕПЯТСТВИЙ ДЛЯ ВПП, ОБОРУДОВАННЫХ ДЛЯ ТОЧНОГО ЗАХОДА НА ПОСАДКУ ПО I, II, III КАТЕГОРИИ
  10. Взаимосвязь модели САРМ с линией рынка капитала и характеристической прямой
  11. Вирионы бывают 3-х типов симметрии: 1)Кубический(форма икосаэдра-20ти гранник:23 плоскости,12 вершин,30 ребер; предст-аденовир)

Пусть прямая l и плоскость α заданы соответственно уравнениями

, α: A x + B y + C z + D = 0.

 

. (3)

 

 

По свойствам уравнения (3) исследуем свойства гиперболы:

 

1. Координатные оси являются осми симметрии гиперболы. Поэтому гиперболу достаточно исследовать только в первой координатной четверти.

2. Если у = 0, то x = а. Если х = 0, то уравнение (3)

решений не имеет. Значит, гипербола пересекает только ось ОХ в точках А1(— а, 0), А2(а,0), называемых вершинами гиперболы.

3. Так как

|х| а. Поэтому гипербола расположена вне полосы, ограниченной прямыми x= а.

4. Если x возрастает от а до + , то из (1.12) следует, что у возрастает от 0 до + в первой координатной четверти.

5.

- наклонные асимптоты гиперболы.

По полученным свойствам строим гиперболу (рис.7). Отрезок А1А2 и его длина 2 а называются действительной осью гиперболы, а отрезок ОА1 и его длина адействительной полуосью. Отрезок В1В2 и его длина 2 bмнимая ось гиперболы, а отрезок ОВ1 и его длина bмнимая полуось. Длина отрезка F1F2=2 с называется фокусным расстоянием, начало координат — центр гиперболы.

 

x 2у 2= а 2

 

 

Определение. Эксцентриситетом эллипса называется число

Так как с< а, то 0< c <1. Заметим, что у окружности оба фокуса

совпадают, поэтому с = 0 и ε = 0.

.

 

Следовательно, эксцентриситет характеризует форму эллипса.

 

Используя понятия эксцентриситета, можно выразить фокальные радиусы произвольной точки M(x,у) эллипса:

 

r1= а +εх, r2= а —εх

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)