АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Соленоидальные векторные поля, условия соленоидальности

Читайте также:
  1. IV. Требования к условиям реализации основной образовательной программы начального общего образования
  2. IV. Условия проведения Конкурса
  3. IV. Условия проведения Конкурса
  4. IX. Снижение класса (подкласса) условий труда при применении работниками, занятыми на рабочих местах с вредными условиями труда, эффективных СИЗ
  5. V. ТРЕБОВАНИЯ К УЧАСТНИКАМ И УСЛОВИЯ ИХ ДОПУСКА
  6. V. Условия конкурса.
  7. V. Условия проведения конкурса концертных направлений.
  8. V. Условия участия в фестивале и конкурсах
  9. VI. ПРОГРАММА И УСЛОВИЯ ПРОВЕДЕНИЯ КОНКУРСНЫХ ПРОСМОТРОВ
  10. VI. Условия участия в фестивале-конкурсе.
  11. XI. Финансовые условия участия в Конкурсе
  12. А) осваивать и выполнять сложные двигательные действия, быстро их перестраивать в соответствии с изменяющимися условиями

Пусть в некоторой области D задано непрерывное векторное поле (M)= (x,y,z). Потоком векторного поля через ориентированную кусочно-гладкую поверхность S, расположенную в области D, называется интеграл , где единичный вектор нормали к поверхности S, указывающий на ее ориентацию, а элемент площади поверхности S.

Векторное поле называется соленоидальным в области D, если поток этого поля через любую кусочно-гладкую несамопересекающуюся поверхность, расположенную в D и представляющую собой границу некоторой ограниченной подобласти области D, равен нулю.

Векторная трубка
S3
S1
S2
Векторные линии
Если дивергенция равна нулю, то есть , то поле вектора называется соленоидальным.

, поэтому поток везде, на каждом сечении трубки, одинаков.

Для того чтобы непрерывно дифференцируемое векторное поле было соленоидальным в объемно-односвязной области D, необходимо и достаточно, чтобы во всех точках D выполнялось равенство . Где дивергенцией (“расходимость”) векторного поля называется скалярная функция


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)