АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция
|
Тройной интеграл, сведение его к повторному
Определение тройного интеграла. Пусть в некоторой области (V) с границей (S) задана в каждой точке функция f (x, y, z). Разобьём тело (V) сеткой поверхностей на частичные области (Vi). В каждой (Vi) возьмём произвольную точку (ξi, ηi, ζi) и составим интегральную сумму: . Устремим максимальный диаметр (макс. расстояние между любой парой точек в области) к нулю: . Тогда, если существует предел интегральных сумм, то он равен тройному интегралу: .
На всякий случай определение интегральной суммы. Пусть на нек-ом отрезке задана . Произведём разбиение отрезка: . Число , называется интегральной суммой функции f (x), соответствующей данному разбиению T (ξ i; xi) сегмента [ a; b ] и данному выбору промежуточных точек ξi на частичных сегментах [xi-1; xi ], Δ –хар-тика разбиения:
Сведение к повторному интегралу. Рассмотрим первый простейший случай. Пусть тело V – прямоугольный параллелепипед. Проведём секущую плоскость. Возьмём приращение плоскости (жирные линии). Тогда: .
S(x)
| Рассмотрим второй случай.
Рассмотрим третий случай – область (V) цилиндрического типа.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | Поиск по сайту:
|