Связь между поверхностными интегралами первого и второго рода
Пусть поверхность S задана уравнением: z = f(x,y), причем f(x,y), f'x(x,y), f'y(x,y) — непрерывные функции в замкнутой области τ (проекции поверхности S на координатную плоскость Оху), а функция R(x,y,z) непрерывна на поверхности S. Нормаль к поверхности S, имеющая направляющие косинусы cos α, cos β, cos γ, выбрана к верхней стороне поверхности S. Тогда .
Для общего случая имеем:

= 
13. Теорема Гаусса-Остроградского, её запись в координатной и векторной (инвариантной) формах.
В координатной форме. Рассмотрим тело (V) в пространстве с ограничивающей поверхностью (S).
Рассмотрим некую функцию R (x, y, z), заданную в области (V) и на границе, непрерывную в этой области и на границе вместе со своими частными производными первого порядка. Рассмотрим интеграл . Спроецируем тело на область D. Возьмём точку (x, y).

Сделаем то же самое, но с проекцией на оси y и z.

Теперь спроектируем на оси x и z.
Складывая эти формулы, получаем формулу Остроградского-Гаусса: . Формула сводит интеграл от объёма к интегралу по границе.
Если и или и или и , тогда . А если , и , то: .
В общем виде теорема звучит так. Пусть в замкнутой ограниченной области (V) заданы функции P(x,y,z), Q(x,y,z) и R(x,y,z), непрерывные на (V) вместе со своими частными производными первого порядка. Тогда имеет место следующее тождество: .
Запись формулы в векторном виде. Пусть . В обычном виде формула выглядит так:
Левую часть можно записать так: , , . Следовательно: , так как . Мы получили поток вектора через замкнутую поверхность. Правую часть можно записать как дивергенцию (расходимость): . В итоге формула Гаусса-Остроградского в векторном виде: . Читается так: поток вектора через замкнутую поверхность равен интегралу по объёму от его дивергенции.
Дивергенцией векторного поля A в точке MÎV называется производная функции по объему в этой точке: .
14. Теорема Стокса, её запись в координатной и векторной (инвариантной) формах.
. {ф. Грина}=
= 
. Аналогично c , c .
Теорема: Пусть в некоторой окрестности поверхности S функции Р(х, у, z), Q(x, у, z) и R(x, у, z) непрерывны и имеют непрерывные частные, производные первого порядка.Тогда имеет место следующее соотношение:
. (Формула Стокса).
.
Инвариантная запись формулы Стокса: Используя выражение для в ортогональном базисе , :
. Укажем на поверхности S определенную сторону, т.е. укажем непрерывное поле единичных нормалей . Используя стандартное обозначение cosx, cosy, cos для координат единичного вектора нормали к поверхности S получим: . Из соотношения видно, левая часть формулы Стокса может быть записана в виде . Скалярное произведение: и элемент площади поверхности S не зависят от выбора декартовой прямоугольной системы координат в пространстве, и при переходе к новому ортогональному базису ', левая часть формулы не изменит своего значения и формы – инвариантна.
Рассмотрим . Пусть – единичный вектор касательной в точках границы L поверхности S, cosa, cosb, cos – координаты этого вектора. , . Т.о – циркуляция векторного поля p по кривой L. - инвариант. Получаем = . 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | Поиск по сайту:
|