|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Определение векторного поля. Поле градиента. Потенциальные поля, условия потенциальностиВекторное поле. Если каждой точке М некоторой области V пространства соответствует значение некоторой векторной величины (M), то говорят, что в области V задано векторное поле (M). Примеры векторных полей – поле тяготения, поля электрической и магнитной напряжённостей, поле скоростей частиц движущейся жидкости. Если в некоторой декартовой системе координат вектор (M) имеет координаты Р (M), Q (M), R (M), то . Таким образом, задание векторного поля (M) эквивалентно заданию трёх скалярных полей Р (M), Q (M), R (M). Будем называть векторное поле гладким, если его координатные функции - гладкие скалярные поля. Градиентом дифференцируемого скалярного поля u(M)=u(x,y,z) называется вектор . Т.е. сумма частных производных умноженных на соответствующие единичные вектора. В общем случае градиент вводится как векторная характеристика скалярного поля — то есть области, каждой точке которой соответствует значение определенного скаляра. Градиент характеризует, насколько быстро меняется скалярная величина в том или ином месте этого поля. Потенциальные векторные поля. Векторное поле A = {Ax, Ay, Az} называется потенциальным, если вектор А является градиентом некоторой скалярной функции u = u(x, y, z): A = grad u = (16.7). При этом функция u называется потенциалом данного векторного поля. Выясним, при каких условиях векторное поле является потенциальным. Так как из (16.7) следует, что , То , = , = . так как смешанная производная второго порядка не зависит от порядка дифференцирования. Из этих равенств легко получаем, что rot A = 0 - условие потенциальности векторного поля. Ротором векторного поля (M) в точке называется векторная величина (векторное поле): . Если выразить через оператор Гамильтона набла: равен векторному произведению . Действительно, . Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |