|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Фундаментальная система решений нормальной системы однородных линейных ОДУ с постоянными коэффициентами в случае простых действительных корней характеристического уравненияНормальная линейная однородная система n порядка с постоянными коэффициентами - или , Коэффициенты линейных комбинаций искомых функций постоянны. Эта система в матричной форме –матричная форма, где A-постоянная матрица. Матричный метод: Из характеристического уравнения найдем различные корни и для каждого корня (с учетом его кратности) определим соответствующее ему частное решение . Общее решение имеет вид: . При этом 1) если - действительный корень кратности 1, то , где -собственный вектор матрицы А, соответствующий собственному значению , то есть . 2) – корень кратности , то соответствующее этому корню решение системы ищут в виде вектора Фундаментальной системой решений НЛОС называется совокупность произвольных n линейно независимых решений Фундаментальная система решений нормальной системы однородных линейных ОДУ с постоянными коэффициентами в случае, когда все корни характеристического уравнения простые, но имеются комплексные корни. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |