АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Простейшие ОДУ высших порядков, интегрируемые в квадратурах и допускающие понижение порядка

Читайте также:
  1. III.1. Гендерные отношения в сфере спорта высших достижений.
  2. Глоссарий по политологии для высших учебных заведений
  3. Дифференциальные уравнения высших порядков, допускающие понижение порядка.
  4. Задача Коши для дифференциального уравнения первого порядка.
  5. Кривые второго порядка.
  6. Логические узлы (агрегаты) ЭВМ, простейшие типы архитектур
  7. Оказание медицинской помощи женщинам с ВИЧ-инфекцией в период беременности, родов и в послеродовом периоде осуществляется в соответствии с разделами I и III настоящего Порядка.
  8. Отличительным признаком __________ является выборный характер высших органов государственной власти.
  9. Проблема локализации высших психических функций
  10. Производные высших порядков
  11. Производные высших порядков
  12. Производные высших порядков явно заданной функции

Обыкновенным дифференциальным уравнением n –го порядка называется уравнение вида F (x, y (x), y '(x), y ''(x), …, y ( n )(x)) = 0, где F — известная функция (n + 2)-х переменных, x — независимая переменная из интервала (a, b), y (x) — неизвестная функция. Число n называется порядком уравнения.

Функция y (x) называется решением (или интегралом) дифференциального уравнения на промежутке (a, b), если она n раз дифференцируема на (a, b) и при подстановке в уравнение обращает его в тождество. Обыкновенные дифференциальные уравнения, разрешенные относительно старшей производной, называют уравнениями в нормальной форме: y ( n ) = f (x, y, y ', y '', …, y ( n − 1)).

Дифференциальное уравнение обычно имеет бесконечно много решений. Чтобы выделить нужное решение, используют дополнительные условия. Чтобы выделить единственное решение уравнения n –го порядка обычно задают n начальных условий y (x 0) = y 0, y '(x 0) = y 1, y ''(x 0) = y 2, …, y (n − 1)(x 0) = yn − 1.

Общим решением дифференциального уравнения F (x, y (x), y '(x), y ''(x), …, y ( n )(x)) = 0 называется функция y = Ф(x, С1, С2, …, С n), содержащая некоторые постоянные (параметры) С1, С2, …, С n, и обладающая следующими свойствами:

1. Ф(x, С1, С2, …, С n) является решением уравнения при любых допустимых значениях С1, С2, …, С m;

2. для любых начальных данных y (x 0) = y 0, y '(x 0) = y 1, y ''(x 0) = y 2, …, y (n − 1)(x 0) = yn − 1, для которых задача Коши имеет единственное решение, существуют значения постоянных С1 = A 1, С2 = A 2, …, С n = An, такие что решение y = Ф(x, A1, A2, …, A n) удовлетворяет заданным начальным условиям.

Иногда частное или общее решение уравнения удается найти только в неявной форме: f (x, y) = 0 или G (x, y, С1, С2,..., С n) = 0.

Такие неявно заданные решения называются частным интегралом или общим интегралом уравнения.

Если задачу об отыскании всех решений дифференциального уравнения удается свести к алгебраическим операциям и к вычислению конечного числа интегралов и производных от известных функций, то уравнение называется интегрируемым в квадратурах. Класс таких уравнений относительно узок.

Если в результате каких–либо преобразований порядок n уравнения F (x, y, y ',..., y (n)) = 0 может быть понижен, то говорят, что уравнение допускает понижение порядка.

К уравнениям, допускающим понижение порядка, относятся в частности, уравнения, не содержащие искомой функции и ее производных до некоторого порядка,, т.е. уравнения вида Заменой z (x) = y(k)(x) такое уравнение сводится к уравнению (n−k)–го порядка: Если z = z (x, C 1,..., C n-k) решение этого уравнения, то общее решение уравнения n–го порядка может быть вычислено по формуле

Простейшее уравнение, допускающее понижение порядка — уравнение вида y (n) = f (x), его общее решение имеет вид

К уравнениям, допускающим понижение порядка, относятся уравнения, не содержащие независимой переменной — уравнения вида F (y, y ',..., y (n)) = 0. Порядок уравнения можно понизить заменив y ' = p(y). После подстановки получим дифференциальное уравнение относительно функции p = p (y), в котором порядок старшей производной от p(y) будет на единицу меньше, чем порядок старшей производной от y(x) в исходном уравнении.

К уравнениям, допускающим понижение порядка, относятся уравнения, не содержащие искомой функции — уравнения вида F (x, y ',..., y (n)) = 0. Порядок уравнения можно понизить заменив y ' = p(x). После подстановки получим дифференциальное уравнение относительно функции p = p (x) на единицу меньшего порядка, чем исходное уравнение: F (x, p, p',..., p(n - 1)) = 0. Если правая часть уравнения F (x, y, y ',..., y (n)) = 0, удовлетворяет условию однородности F (x, ty, ty ',..., ty (n)) = tk F (x, y, y ',..., y (n)) то говорят, что это уравнение, однородное относительно неизвестной функции и всех ее производных. Если в результате каких–либо преобразований порядок n уравнения F (x, y, y ',..., y (n)) = 0 может быть понижен, то говорят, что уравнение допускает понижение порядка.

К уравнениям, допускающим понижение порядка, относятся уравнения, однородные относительно неизвестной функции и всех ее производных. Порядок такого уравнения можно понизить заменой Выражение для первой производной от y (x) не содержит производной от z (x): . Поэтому, заменив в исходном уравнении y, y ',..., y (n) их выражениями через z (x), получим относительно z (x) дифференциальное уравнение на единицу меньшего порядка.


Основные понятия, относящиеся к системам ОДУ: порядок системы, нормальная форма системы, общее и частное решения, общий и первый интегралы. Задача Коши для нормальной системы, её геометрический смысл.

Совокупность соотношений вида:

Где y1, y2, …, yn искомые функции от независимой переменной x, называется системой обыкновенных дифференциальных уравнений первого порядка.

Будем предполагать функции F2, F2, …, Fn такими, что система разрешима относительно производных от искомых функций:

Такие системы называются нормальными системами дифференциальных уравнений.

Число уравнений, входящих в систему, называется порядком этой системы. Значит, наша система имеет n-ый порядок.

Такая система, когда в левой части уравнений стоят производные первого порядка, а правые части не содержат производных, называется нормальной.

Семейство решений системы (2), зависящее от n произвольных постоянных C1, C2, …, Cn

называют обычно общим решением этой системы.

Дадим определение общего решения системы (2) в области D изменения переменных x, y1, y2, …, yn.

В качестве области D будем рассматривать область в пространстве (x, y1, y2, …, yn), в каждой точке которой имеет место существование и единственность решения задачи Коши для системы (2).

Совокупность n функций (6), определённых в некоторой области изменения переменных x, C1, C2, …, Cn, имеющих непрерывные частные производные по x, будем называть общим решением системы (2) в области D, если система (6) разрешима относительно произвольных постоянных C1, C2, …, Cn в области D, так что при любых значениях x, y1, y2, …, yn, принадлежащих области D, системой (6) определяются значения C1, C2, …, Cn:

и если совокупность n функций (6) является решением системы (2) при всех значениях произвольных постоянных C1, C2, …, Cn, доставляемых формулами (7), когда точка (x, y1, y2, …, yn) пробегает область D.

Решение, получающееся из формулы общего решения при частных числовых значениях произвольных постоянных C1, C2, …, Cn,, включая бесконечности, будет частным решением.

Решая задачу Коши при помощи формулы общего решения всегда получаем частное решение.

1-ое определение интеграла системы. Функция φ(x, y1, y2, …, yn), не приводящаяся к постоянной, называется интегралом системы (2), если при замене y1, …, yn любым частным решением этой системы она обращается в постоянную.

2-ое определение интеграла системы. Функция φ(x, y1, y2, …, yn), имеющая непрерывные частные производные по x, y2, …, yn, и такая, что в рассматриваемой области не обращаются одновременно в нуль, называется интегралом системы (2), если полный дифференциал этой функции обращается тождественно в нуль в силу системы (2), то есть имеет место тождество:

.

Равенство , где – интеграл системы (2) в смысле первого или второго определения, а C – произвольная постоянная, называется первым интегралом системы (2). Например, каждое из равенств (7) является первым интегралом системы (2).

Совокупность n первых интегралов (7) обладает тем свойством, что она разрешима относительно искомых функций y1, y2, …, yn, причём в результате этого мы получаем общее решение (6) системы (2) в области D. Всякую совокупность n первых интегралов, обладающую таким свойством, будем называть общим интегралом системы (2) в области D.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)