АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Второй закон Г.Менделя

Читайте также:
  1. I. Возникновение родительской власти над законными детьми
  2. II етап-1993 р. - липень 1994 р. (етап початку масової малої та великої (акціонування) приватизації (роздержавлення), або законо-декрето-указовий період)
  3. II. Возникновение родительской власти над детьми: внебрачными, узаконенными и усыновленными
  4. II. Личные отношения между родителями и детьми, законными и другими
  5. II. Местные законы
  6. II. Попередній розгляд законопроекту.
  7. III етап - серпень 1994 р. - червень 1996 р. (етап інтенсивної масової приватизації (роздержавлення), або указо-декрето-законовий період)
  8. III. Блок законов по радиационной безопасности населения.
  9. III. Законы Российской Федерации и нормативные акты
  10. IV. Единые требования к использованию и сохранности учебников для учеников и их законных представителей
  11. IV. ЗАКОНЫ ХП ТАБЛИЦ
  12. IV. Обязательства вознаграждения личного вреда по закону

Семена гибридов первого поколения использовались Менделем для получения второго гибридного поколения. Во втором поколении три четвертых от всех семян (6022) имели желтую окраску, одна четвертая (2001) — зеленую. Такое же соотношение 3:1 были получены при скрещивании или самоопылении гибридов с другими анализируемыми признаками.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением. Причем наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям.

Таким образом, на основе скрещивания гибридов первого поколения и анализа второго был сформулирован второй закон Менделя: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

Для объяснения явления доминирования и расщепления гибридов второго поколения Мендель предложил г ипотезу чистоты гамет. Он предположил, что развитие признака определяется соответствующим ему наследственным фактором. Один наследственный фактор гибриды получают от отца, другой — от матери. У гибридов F1 проявляется лишь один из факторов — доминантный. Однако, среди гибридов F2, появляются особи с признаками исходных родительских форм. Это значит, что: у гибридов наследственные факторы сохраняются в неизменном виде; половые клетки содержат только один наследственный фактор, то есть они "чисты" (не содержат второго наследственного фактора). Итак, гипотеза чистоты гамет гласит: наследственные факторы при образовании гибридов не смешиваются, а сохраняются в неизменном виде.

Наследственные задатки (гены) Мендель предложил обозначать большими буквами латинского алфавита, например, доминантный признак А, рецессивный — а.

Поскольку в своих опытах Г. Мендель использовал растения, относящиеся к разным чистым линиям, анализируемые гены этих растений одинаковы, потомство было единообразным. Организмы, не дающие расщепления в потомстве, называются гомозиготными. Они могут быть гомозиготными по доминантным (АА) или по рецессивным генам (аа). Организмы, в потомстве которых наблюдается расщепление, называются гетерозиготными (Аа).

Во времена Менделя строение и развитие половых клеток еще не было изучено. Поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время легко объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения.

Предположим, что соматические клетки несут всего одну пару гомологичных хромосом, содержащих гены, определяющие окраску семян у гороха. Обозначим ген, определяющий желтую окраску, буквой А, а зеленую — а. Поскольку Мендель работал с чистыми линиями, оба организма — гомозиготны, то есть несут два одинаковых гена окраски семян (соответственно, АА и аа). Во время мейоза число хромосом уменьшается в два раза и в каждую гамету попадает только одна хромосома. Но так как обе хромосомы несут одинаковые гены, все гаметы одного организмы будут содержать одну хромосому с геном А, а другого — с геном а.

Генетическая запись осуществляется следующим образом:

Дано: Решение:

Р АА х аа

Ген Признак Желт. Зелен.

А — желтые семена; Гам.

а — зеленые семена;

Р АА х аа F1 Аа х Аа

Желт. Зелен. Желт. Желт.

F1 =? Гам.

F2 АА + 2Аа + аа

Желт. Желт. Зелен.

При оплодотворении гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа, то есть оба аллеля одного и того же гена. У гибридного организма во время мейоза хромосомы расходятся в разные клетки и образуется два типа гамет — 50% гамет будет нести ген А, 50% — ген а. Оплодотворение — процесс случайный и равновероятный, то есть любой спермий может оплодотворить любую яйцеклетку. А поскольку образовалось два типа спермиев и два типа яйцеклеток, возможно возникновение четырех типов зигот.

Рис. 3. Моногибридное скрещивание
Для удобства расчета сочетания гамет при оплодотворении английский генетик Р.Пеннет предложил проводить запись в виде решетки, которую так и назвали — решетка Пеннета. По вертикали указываются женские гаметы, по горизонтали — мужские (рис. 3). В клетки решетки вписываются генотипы зигот, образовавшихся при слиянии гамет. Из приведенной схемы видно, что образуется три типа зигот. Половина из них — гетерозиготы (несут гены А и а), 1/4 — гомозиготы по доминантному признаку (несут два гена А) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а). Причем желтосеменные растения одинаковы по фенотипу, но различны по генотипу: 1/3 являются гомозиготными по доминантному признаку и 2/3 — гетерозиготны.

Таким образом, учитывая цитологические основы, второй закон Менделя можно сформулировать следующим образом: при скрещивании двух потомков первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1.

© Закрепление. Беседа. Работа учащихся с тетрадью и кодограммой.

© Задание на дом. Изучить текст параграфа, ответить на вопросы.

 

Приложение 1. Кодограмма к уроку.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)