|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Геометрична інтерпретація комплексних чиселОскільки комплексне число визначається як пара дійсних чисел, те природною геометричною інтерпретацією є зображення комплексного числа z = а + ib точкою площини ху з декартовими координатами х = а й у = b. Число z = 0 ставиться у відповідність початку координат даної площини. Таку - площина ми надалі будемо називати комплексною площиною, вісь абсцис — дійсної, а вісь ординат — мнимою віссю комплексної площини. При цьому, мабуть, установлюється взаємно однозначна відповідність між множиною всіх комплексних чисел і множиною крапок комплексної площини, а також між множиною всіх комплексних чисел z = a+ib і множиною вільних векторів, проекції х и у яким на осі абсцис й ординат відповідно рівні а й b. Дуже важливою є також інша форма подання комплексних чисел. Для визначення положення крапки на площині можна користуватися полярними координатами
При цьому Два відмінних від нуля комплексні числа рівні між собою в тім і тільки в тому випадку, якщо рівні їхні модулі, а значення аргументів або рівні, або відрізняються на число, кратне Комплексно сполучені числа мають той самий модуль, а значення їхніх аргументів, при відповідному виборі областей їхньої зміни, розрізняються знаком. Нарешті, використовуючи відому формулу Ейлера
Рисунок 1- Операції над векторами Відзначене вище відповідність між множиною всіх комплексних чисел і плоских векторів дозволяє ототожнити операції додавання й вирахування комплексних чисел з відповідними операціями над векторами (рисунок 1). При цьому легко встановлюються нерівності трикутника:
Модуль різниці двох комплексних чисел має геометричний сенс відстані між відповідними крапками на комплексній площині. Відзначимо, крім того, очевидні нерівності Для виконання операції множення зручно користуватися тригонометричною формою подання комплексних чисел. Відповідно до правил множення одержуємо
звідси,
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.657 сек.) |