АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Поняття функції комплексної змінної. Безперервність

Читайте также:
  1. II. Поняття соціального процесу.
  2. III. Соціальна політика, її сутність і функції.
  3. АБСТРАКТНІ КЛАСИ І ЧИСТІ ВІРТУАЛЬНІ ФУНКЦІЇ_________________________________________
  4. Автоматизоване робоче місце бухгалтера (АРМБ): призначення, функції та його рівні.
  5. Автоматизоване робоче місце бухгалтера (АРМБ): призначення, функції та його рівні.
  6. Акти застосування права: поняття, ознаки, види, структура
  7. Алгоритм знаходження функції, оберненої до даної.
  8. Банківська система. Банки, їх види та функції
  9. Банківська система. Банки, їх види та функції
  10. Біржова торгівля. Товарна та фондова біржа, їх функції та значення
  11. Бухгалтерські рахунки, їх призначення, функції і побудова
  12. Бюджетно-податкова політика забезпечує найважливіші економічні функції держави, які формують її дієздатність в економічній політиці:

Однозначна функція комплексної змінної z, задана в області G, визначається законом, що ставить кожному значенню z з області G у відповідність певне комплексне число . Символічно зазначена відповідність будемо записувати у вигляді .

Множина комплексних чисел w, що відповідають усім , називається множиною значень функції f(z). Оскільки кожне комплексне число характеризується парою дійсних чисел, то завдання комплексної функції w =u+iv комплексної змінної z = х +iу еквівалентно завданню двох дійсних функцій двох дійсних змінних, що може бути записане у вигляді w(z) =и(х, у) + iv(x, у).

Функції u(х,у) і v(x,y) визначені в області G площини дійсних змінних x, y, що відповідає області G комплексної площини z. Функція u(х,у) називається дійсною, а функція v(x,y) — мнимою частиною функції w = f(z).

Множина значень w функції f(z) на комплексній площині w може мати найрізноманітнішу структуру. Зокрема, це може бути область G або замкнута область . Надалі ми будемо розглядати тільки такі випадки.

Завданням функції w = f(z) установлюється відповідність між точками області комплексної площини z і точками області G комплексної площини w. Говорять, що при цьому задане відображення області на область G. Очевидно, установлюється й зворотна відповідність — кожній точці ставиться у відповідність одна або кілька точок z області . В останньому випадку можна говорити, що в області G задана багатозначна функція комплексної змінної w. Функція, що здійснює відображення області G комплексної площини w на область комплексної площини z, називається зворотною функцією f(z) є однозначною в області G. Тоді функція w = f{z) здійснює взаємно однозначне відображення області на область G.

Перейдемо до поняття безперервності функції комплексної змінної.

Нехай функція f(z) визначена на деякій множині Е. Розглянемо різні послідовності точок цієї множини , що сходяться до деякої точки й складаються із точок відмінних від точки (), і відповідні їм послідовності значень функції . Якщо незалежно від вибору послідовності існує єдина межа , то ця межа називається граничним значенням, або межею, функції f(z) у точці , що записується у вигляді .

Функція f(z), задана на множині Е, називається безперервною в точці , якщо граничне значення цієї функції в точці існує, звичайне й збігається зі значенням функції f(z) у точці , тобто .

Якщо функція f(z), задана на множині Е, безперервна у всіх точках цієї множини, то говорять, що функція f(z) безперервна на множині Е.

Геометрично це означає, що функція комплексної змінної, безперервна в деякій точці , ставить у відповідність кожній точці з -околиці точки деяку точку, що належить -околиці точки .

З безперервності функції комплексної змінної f(z) =u(х,у) + iv(x,y) витікає безперервність її дійсної u(х,у) і мнимої v(x,y) частин по сукупності змінних x,у. Має місце й зворотне твердження, тобто якщо u(х,у) і v(x,y) суть безперервні функції по сукупності змінних x,у у деякій точці , то f(z)=u)x,y)+iv(x,y) є функцією комплексної змінної z = x+iy, безперервної в точці . Дані твердження є наслідком того, що необхідною й достатньою умовою збіжності послідовності комплексних чисел є збіжність послідовностей їх дійсних і мнимих частин.

Це дозволяє перенести на функції комплексної змінної основні властивості безперервних функцій двох дійсних змінних. Так, сума й добуток двох функцій комплексної змінної й , безперервних в області G, також є безперервними функціями в цій області; функція безперервна в тих крапках області G, де , функція f(z), безперервна на замкнутій множині , обмежена по модулі на й т.д.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)