|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
ТОЧКИ РАЗРЫВА И ИХ КЛАССИФИКАЦИЯ
Если рассмотреть график функции в окрестности точки x = 0 (см. рис. справа), то ясно видно, что он как бы “разрывается” на отдельные кривые. Аналогично можно рассмотреть функцию, изображенную на рисунке слева в окрестности точки 2. Говорят, что во всех указанных точках соответствующие функции становятся разрывными. Точка называется точкой разрыва функции y = f(x), если она принадлежит области определения функции или её границе и не является точкой непрерывности. В этом случае говорят, что при x= x0 функция разрывна. Это может произойти, если в точке x0 функция не определена или не существует предел , или если предел существует, но . Примеры. 1. Рассмотрим функцию: Эта функция определена во всех точках отрезка [0, 4] и её значение при x = 3 равно 0. Однако, в точке x = 3 функция имеет разрыв, т.к. она не имеет предела при x = 3: Следует отметить, что f(x) непрерывна во всех остальных точках отрезка [0, 4]. При этом в точке x = 0 она непрерывна справа, а в точке x = 4 – слева, т.к. . 2. Как уже отмечалось, функция разрывна при x = 0. Действительно, при x = 0 функция не определена: . 3. Функция разрывна при x = 0. Действительно, . При x = 0 функция не определена. 4. Функция определена для всех значений x, кроме x = 0. В этой точке она имеет разрыв, т.к. предел не существует (рисунок см. в лекции 1). Точки разрыва функции можно разбить на два типа. Точка разрыва x0 функции f(x) называется точкой разрыва первого рода, если существуют оба односторонних конечных предела и , но они не равны между собой или не равны значению функции в точке x0, т.е. f(x0). Точка разрыва, не являющаяся точкой разрыва первого рода, называется точкой разрыва второго рода. Примеры: В первом примере точка х= 3 является точкой разрыва первого рода. В примерах 2 – 4 все точки разрыва являются точками разрыва второго рода. 5. Для функции, изображённой на рисунке точка x = 2 является точкой разрыва первого рода. 6. Функция не определена в точке x = 0. Эта точка является точкой разрыва 1-го рода, т.к. в ней существуют пределы справа и слева.
Рассмотрим некоторые свойства функций непрерывных на отрезке. Эти свойства приведём без доказательства. Функцию y = f(x) называют непрерывной на отрезке [ a, b ], если она непрерывна во всех внутренних точках этого отрезка, а на его концах, т.е. в точках a и b, непрерывна соответственно справа и слева. Теорема 1. Функция, непрерывная на отрезке [ a, b ], хотя бы в одной точке этого отрезка принимает наибольшее значение и хотя бы в одной – наименьшее. Теорема утверждает, что если функция y = f(x) непрерывна на отрезке [ a, b ], то найдётся хотя бы одна точка x1 Î [ a, b ] такая, что значение функции f(x) в этой точке будет самым большим из всех ее значений на этом отрезке: f(x1) ≥ f(x). Аналогично найдётся такая точка x2, в которой значение функции будет самым маленьким из всех значений на отрезке: f(x1) ≤ f(x). Ясно, что таких точек может быть и несколько, например, на рисунке показано, что функция f(x) принимает наименьшее значение в двух точках x2 и x 2'. Замечание. Утверждение теоремы можно стать неверным, если рассмотреть значение функции на интервале (a, b). Действительно, если рассмотреть функцию y = x на (0, 2), то она непрерывна на этом интервале, но не достигает в нём ни наибольшего, ни наименьшего значений: она достигает этих значений на концах интервала, но концы не принадлежат нашей области. Также теорема перестаёт быть верной для разрывных функций. Приведите пример. Следствие. Если функция f(x) непрерывна на [ a, b ], то она ограничена на этом отрезке.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.) |