АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

В БЕСКОНЕЧНО УДАЛЕННОЙ ТОЧКЕ

Читайте также:
  1. Аналитический подход к исследованию величин в критической точке
  2. Бесконечно большие и бесконечно малые функции
  3. БЕСКОНЕЧНО БОЛЬШИЕ ФУНКЦИИ
  4. Бесконечно малые и бесконечно большие функции
  5. БЕСКОНЕЧНО МАЛЫЕ ФУНКЦИИ И ИХ ОСНОВНЫЕ СВОЙСТВА
  6. Бесконечнозначная логика как обобщение многозначной системы Поста
  7. Вопрос35. Предел Функции в точке и на бесконечности. Геометрическая иллюстрация определений. Предел постоянной. Предел суммы, частного, произведения. Предел элементарных функций.
  8. Информационные инструменты бесконечного расширения
  9. Конечность и бесконечность существования в перспективе жизни
  10. Лекция 2 ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ В ТОЧКЕ
  11. Николай Кузанский: ученое незнание в отношении к бесконечному

До сих пор мы рассматривали пределы для случая, когда переменная величина x стремилась к определенному постоянному числу.

Будем говорить, что переменная x стремится к бесконечности, если для каждого заранее заданного положительного числа M (оно может быть сколь угодно большим) можно указать такое значение х=х0, начиная с которого, все последующие значения переменной будут удовлетворять неравенству |x|>M.

Например, пусть переменная х принимает значения x 1= –1, x 2 = 2, x 3= –3, …, x n=(–1) nn, … Ясно, что это бесконечно большая переменная величина, так как при всех M > 0 все значения переменной, начиная с некоторого, по абсолютной величине будут больше M.

Переменная величина x → +∞, если при произвольном M > 0 все последующие значения переменной, начиная с некоторого, удовлетворяют неравенству x > M.

Аналогично, x → – ∞, если при любом M > 0 x < -M.

Будем говорить, что функция f(x) стремится к пределу b при x → ∞, если для произвольного малого положительного числа ε можно указать такое положительное число M, что для всех значений x, удовлетворяющих неравенству |x|>M, выполняется неравенство | f(x) - b | < ε.

Обозначают .


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)