|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
ГИПЕРБОЛИЧЕСКИЕ ФУНКЦИИВо многих приложениях математического анализа встречаются комбинации показательных функций. Эти комбинации рассматриваются как новые функции и обозначаются:
С помощью этих функций можно определить еще две функции.
Функции sh x, ch x, th x определены, очевидно, для всех значений x, т.е. их область определения (–∞; +∞). Функция же cthx определена всюду за исключением точки x = 0. Между гиперболическими функциями существуют следующие соотношения, аналогичные соответствующим соотношениям между тригонометрическими функциями. Найдем: Т.е.
Итак,
Следовательно, Найдем производные гиперболических функций
Аналогично можно показать
Т.е. Графики гиперболических функций. Для того чтобы изобразить графики функций
Проведем исследования функции y = th x. 1. a. D(f) = (–∞; +∞), точек разрыва нет. b. Точка пересечения с осями координат 2.
3. 4. a. Вертикальной асимптоты нет. b. y = cth x 1. D 2.
3. 4. a. b. При x → +∞
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.344 сек.) |