СРАВНЕНИЕ БЕСКОНЕЧНО МАЛЫХ ФУНКЦИЙ
Пусть при x → a функции f(x) и g(x) являются бесконечно малыми. Тогда будем пользоваться следующими определениями.
1. Если , то f(x) называется бесконечно малой высшего порядка, чем g(x) (относительно g(x)).
2. Если , то функции f(x) и g(x) называются бесконечно малыми одного порядка.
3. Если , то f(x) называется бесконечно малой k-го порядка относительно g(x).
Если , то функции f(x) и g(x) называются эквивалентными бесконечно малыми. В этом случае обе функции стремятся к нулю примерно с одинаковой скоростью. Эквивалентные бесконечно малые будем обозначать f ≈ g. 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | Поиск по сайту:
|