АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

НЕПРЕРЫВНОСТЬ ДИФФЕРЕНЦИРУЕМОЙ ФУНКЦИИ

Читайте также:
  1. II. Основные задачи и функции
  2. III. Предмет, метод и функции философии.
  3. XVIII. ПРОЦЕДУРЫ И ФУНКЦИИ
  4. А) ПЕРЕДАЧА НА РУССКОМ ЯЗЫКЕ ФУНКЦИИ АРТИКЛЯ
  5. А. Средняя квадратическая погрешность функции измеренных величин.
  6. Абстрактные классы и чистые виртуальные функции. Виртуальные деструкторы. Дружественные функции. Дружественные классы.
  7. Адаптивные функции
  8. Администраторы судов, их функции
  9. Алгебраическое интерполирование функции.
  10. Анализ функции логики высказываний
  11. Аналитические функции
  12. Арендная плата: состав и функции

Функция y=f(x) называется дифференцируемой в некоторой точке x 0, если она имеет в этой точке определенную производную, т.е. если предел отношения существует и конечен.

Если функция дифференцируема в каждой точке некоторого отрезка [ а; b ] или интервала (а; b), то говорят, что она дифференцируема на отрезке [ а; b ] или соответственно в интервале (а; b).

Справедлива следующая теорема, устанавливающая связь между дифференцируемыми и непрерывными функциями.

Теорема. Если функция y=f(x) дифференцируема в некоторой точке x0, то она в этой точке непрерывна.

Таким образом, из дифференцируемости функции следует ее непрерывность.

Доказательство. Если , то

,

где α бесконечно малая величина, т.е. величина, стремящаяся к нулю при Δ x →0. Но тогда

Δ y = f '(x0) Δ x +αΔ x => Δ y →0 при Δ x →0, т.е f(x) – f(x0) →0 при xx 0, а это и означает, что функция f(x) непрерывна в точке x 0. Что и требовалось доказать.

Таким образом, в точках разрыва функция не может иметь производной. Обратное утверждение неверно: существуют непрерывные функции, которые в некоторых точках не являются дифференцируемыми (т.е. не имеют в этих точках производной).

Рассмотрим на рисунке точки а, b, c.

В точке a при Δ x →0 отношение не имеет предела (т.к. односторонние пределы различны при Δ x →0–0 и Δ x →0+0). В точке A графика нет определенной касательной, но есть две различные односторонние касательные с угловыми коэффициентами к 1 и к 2. Такой тип точек называют угловыми точками.

В точке b при Δ x →0 отношение является знакопостоянной бесконечно большой величиной . Функция имеет бесконечную производную. В этой точке график имеет вертикальную касательную. Тип точки – "точка перегиба" c вертикальной касательной.

В точке c односторонние производные являются бесконечно большими величинами разных знаков. В этой точке график имеет две слившиеся вертикальные касательные. Тип – "точка возврата" с вертикальной касательной – частный случай угловой точки.

Примеры.

1. Рассмотрим функцию y=|x|. Эта функция непрерывна в точке x = 0, т.к. .

Покажем, что она не имеет производной в этой точке.

f (0+Δ x) = fx) = |Δ x |. Следовательно, Δ y = fx) – f (0) = |Δ x |

Но тогда при Δ x < 0 (т.е. при Δ x стремящемся к 0 слева)

А при Δ x > 0

Т.о., отношение при Δ x → 0 справа и слева имеет различные пределы, а это значит, что отношение предела не имеет, т.е. производная функции y=|x | в точке x = 0 не существует. Геометрически это значит, что в точке x = 0 данная "кривая" не имеет определенной касательной (в этой точке их две).

2. Функция определена и непрерывна на всей числовой прямой. Выясним, имеет ли эта функция производную при x = 0.

Следовательно, рассматриваемая функция не дифференцируема в точке x = 0. Касательная к кривой в этой точке образует с осью абсцисс угол p/2, т.е. совпадает с осью Oy.

Производные элементарных функций.

1.
y = xn.
Если n – целое положительное число, то, используя формулу бинома Ньютона:

(a + b)n = a n+ n·a n-1· b + 1/2∙ n(n – 1)a n-2b 2+ 1/(2∙3)∙ n(n – 1)(n – 2)an-3b3+…+ bn,

можно доказать, что

Итак, если x получает приращение Δ x, то f(xx) = (x + Δ x)n, и, следовательно,

Δ y =(xx) nxn = n·xn-1 ·Δ x + 1/2·n·(n– 1 )·xn-2 ·Δ x2 +…+Δ xn.

Заметим, что в каждом из пропущенных слагаемых есть множитель Δ x в степени выше 3.

Найдем предел

Мы доказали эту формулу для n  N. Далее увидим, что она справедлива и при любом n  R.

2. y = sin x. Вновь воспользуемся определением производной.

Так как, f(xx)= sin(xx), то

Таким образом,

3. Аналогично можно показать, что

4. Рассмотрим функцию y = ln x.

Имеем f (xx)=ln(xx). Поэтому

Итак,

5. Используя свойства логарифма можно показать, что

Формулы 3 и 5 докажите самостоятельно.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)