АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ПРОИЗВОДНАЯ НЕЯВНОЙ ФУНКЦИИ

Читайте также:
  1. II. Основные задачи и функции
  2. III. Предмет, метод и функции философии.
  3. XVIII. ПРОЦЕДУРЫ И ФУНКЦИИ
  4. А) ПЕРЕДАЧА НА РУССКОМ ЯЗЫКЕ ФУНКЦИИ АРТИКЛЯ
  5. А. Средняя квадратическая погрешность функции измеренных величин.
  6. Абстрактные классы и чистые виртуальные функции. Виртуальные деструкторы. Дружественные функции. Дружественные классы.
  7. Адаптивные функции
  8. Администраторы судов, их функции
  9. Алгебраическое интерполирование функции.
  10. Анализ функции логики высказываний
  11. Аналитические функции
  12. Арендная плата: состав и функции

Пусть значения двух переменных x и y связаны между собой некоторым уравнением, которое символически запишем так:

F(x, y) = 0. (1)


Если на некотором множестве D каждому значению переменной x соответствует единственное значение y, которое вместе с x удовлетворяет уравнению (1), то будем говорить, что это уравнение задает неявную функцию y=f(x).

Из определения следует, что для любой неявной функции y=f(x), заданной уравнением (1), имеет место тождество F(x, f(x)) ≡ 0, справедливое при всех x Î D.

Например, уравнение x 2 + y 2a 2 = 0 неявно определяет две элементарные функции . Действительно, после подстановки в исходное уравнение этих значений получим равенство x 2+(a 2x 2) – a 2 = 0.

Однако, не всякую неявно заданную функцию можно представить явно, т.е. в виде y=f(x).

Например, функции, заданные уравнениями y 2yx 2=0 или , не выражаются через элементарные функции, т.е. эти уравнения нельзя разрешить относительно y.

Заметим, что каждая явная функция y=f(x) может быть представлена и как неявная yf(x) = 0.

Таким образом, неявная функция – это определенный способ задания зависимости между переменными x и y.

Рассмотрим правило нахождения производной неявной функции, не преобразовывая ее в явную, т.е. не представляя в виде y=f(x).

Чтобы найти производную у ' неявной функции F(x, y) =0, нужно обе части этого уравнения продифференцировать по x, рассматривая у как функцию от x, и из этого полученного уравнения найти искомую производную y '. Чтобы найти y '', нужно уравнение F(x, y) =0 дважды продифференцировать по x и выразить y '' и т.д.

Примеры. Найти производные функций заданных неявно.

1.

2.

Итак, производная неявной функции выражается, как правило, не только через аргумент, но и через функцию.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)