АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ

Читайте также:
  1. II. Основные задачи и функции
  2. III. Предмет, метод и функции философии.
  3. S-M-N-теорема, приклади її використання
  4. XVIII. ПРОЦЕДУРЫ И ФУНКЦИИ
  5. А) ПЕРЕДАЧА НА РУССКОМ ЯЗЫКЕ ФУНКЦИИ АРТИКЛЯ
  6. А. Средняя квадратическая погрешность функции измеренных величин.
  7. Абстрактные классы и чистые виртуальные функции. Виртуальные деструкторы. Дружественные функции. Дружественные классы.
  8. Адаптивные функции
  9. Администраторы судов, их функции
  10. Алгебраическое интерполирование функции.
  11. Анализ функции логики высказываний
  12. Аналитические функции

Пусть y = f(u), а u = u (x). Получаем функцию y, зависящую от аргумента x: y = f(u(x)). Последняя функция называется функцией от функции или сложной функцией.

Областью определения функции y = f(u(x)) является либо вся область определения функции u = u (x) либо та ее часть, в которой определяются значения u, не выходящие из области определения функции y = f(u).

Операция "функция от функции" может проводиться не один раз, а любое число раз.

Установим правило дифференцирования сложной функции.

Теорема. Если функция u = u (x) имеет в некоторой точке x0 производную и принимает в этой точке значение u0 = u (x0), а функция y= f(u) имеет в точке u0 производную y 'u= f '(u0), то сложная функция y = f(u(x)) в указанной точке x0 тоже имеет производную, которая равна y 'x= f '(u0u '(x0), где вместо u должно быть подставлено выражение u = u (x).

Таким образом, производная сложной функции равна произведению производной данной функции по промежуточному аргументу u на производную промежуточного аргумента по x.

Доказательство. При фиксированном значении х 0 будем иметь u 0= u (x 0), у 0 =f(u 0 ). Для нового значения аргумента x0x:

Δ u = u (x0 + Δ x) – u (x 0), Δ y = f (u0u) – f (u0).

Т.к. u – дифференцируема в точке x0, то u – непрерывна в этой точке. Поэтому при Δ x →0 Δ u →0. Аналогично при Δ u →0 Δ y →0.

По условию . Из этого соотношения, пользуясь определением предела, получаем (при Δ u →0)

,

где α→0 при Δ u →0, а, следовательно, и при Δ x →0.

Перепишем это равенство в виде:

Δ y = y 'uΔ u +α·Δ u.

Полученное равенство справедливо и при Δ u =0 при произвольном α, так как оно превращается в тождество 0=0. При Δ u =0 будем полагать α=0. Разделим все члены полученного равенства на Δ x

.

По условию . Поэтому, переходя к пределу при Δ x →0, получим y 'x= y 'u·u 'x. Теорема доказана.

Итак, чтобы продифференцировать сложную функцию y = f(u(x)), нужно взять производную от "внешней" функции f, рассматривая ее аргумент просто как переменную, и умножить на производную от "внутренней" функции по независимой переменной.

Если функцию y=f(x) можно представить в виде y=f(u), u=u(v), v=v(x), то нахождение производной y 'x осуществляется последовательным применением предыдущей теоремы.

По доказанному правилу имеем y 'x= y 'u· u 'x. Применяя эту же теорему для u 'x получаем , т.е.

y 'x = y 'x· u 'v· v 'x = f 'u (uu 'v (vv 'x (x).


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)