АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ПОНЯТИЕ ОБРАТНОЙ ФУНКЦИИ

Читайте также:
  1. I. Понятие и значение охраны труда
  2. I. Понятие общества.
  3. II. ОСНОВНОЕ ПОНЯТИЕ ИНФОРМАТИКИ – ИНФОРМАЦИЯ
  4. II. Основные задачи и функции
  5. II. Понятие социального действования
  6. III. Предмет, метод и функции философии.
  7. XVIII. ПРОЦЕДУРЫ И ФУНКЦИИ
  8. А) ПЕРЕДАЧА НА РУССКОМ ЯЗЫКЕ ФУНКЦИИ АРТИКЛЯ
  9. А. Понятие жилищного права
  10. А. Понятие и общая характеристика рентных договоров
  11. А. Понятие и признаки подряда
  12. А. Понятие и элементы договора возмездного оказания услуг
Начнем с примера. Рассмотрим функцию y= x3. Будем рассматривать равенство y = x3 как уравнение относительно x. Это уравнение для каждого значения у определяет единственное значение x: . Геометрически это значит, что всякая прямая параллельная оси Ox пересекает график функции y= x3 только в одной точке. Поэтому мы можем рассматривать x как функцию от y. Функция называется обратной по отношению к функции y= x3. Прежде чем перейти к общему случаю, введем определения. Функция y = f(x) называется возрастающей на некотором отрезке, если большему значению аргумента x из этого отрезка соответствует большее значение функции, т.е. если x 2> x 1, то f(x 2 ) > f(x 1 ). Аналогично функция называется убывающей, если меньшему значению аргумента соответствует большее значение функции, т.е. если х 2 < х 1, то f(x 2 ) > f(х 1 ). Итак, пусть дана возрастающая или убывающая функция y= f(x), определенная на некотором отрезке [ a; b ]. Для определенности будем рассматривать возрастающую функцию (для убывающей все аналогично). Рассмотрим два различных значения х 1 и х 2. Пусть y 1 =f(x 1 ), y 2 =f(x 2 ). Из определения возрастающей функции следует, что если x 1< x 2, то у 1< у 2. Следовательно, двум различным значениям х 1 и х 2 соответствуют два различных значения функции у 1 и у 2. Справедливо и обратное, т.е. если у 1< у 2, то из определения возрастающей функции следует, что x 1< x 2. Т.е. вновь двум различным значениям у 1 и у 2 соответствуют два различных значения x 1 и x 2. Т.о., между значениями x и соответствующими им значениями y устанавливается взаимно однозначное соответствие, т.е. уравнение y=f(x) для каждого y (взятого из области значений функции y=f(x)) определяет единственное значение x, и можно сказать, что x есть некоторая функция аргумента y: x= g(у).


Эта функция называется обратной для функции y=f(x). Очевидно, что и функция y=f(x) является обратной для функции x=g(у).

Заметим, что обратная функция x=g(y) находится путем решения уравнения y=f(x) относительно х.

Пример. Пусть дана функция y = ex. Эта функция возрастает при –∞ < x <+∞. Она имеет обратную функцию x = ln y. Область определения обратной функции 0 < y < + ∞.

Сделаем несколько замечаний.

Замечание 1. Если возрастающая (или убывающая) функция y=f(x) непрерывна на отрезке [ a; b ], причем f(a)=c, f(b)=d, то обратная функция определена и непрерывна на отрезке [ c; d ].

Замечание 2. Если функция y=f(x) не является ни возрастающей, ни убывающей на некотором интервале, то она может иметь несколько обратных функций.

Пример. Функция y=x2 определена при –∞< x <+∞. Она не является ни возрастающей, ни убывающей и не имеет обратной функции. Однако, если мы рассмотрим интервал 0≤ x <+∞, то здесь функция является возрастающей и обратной для нее будет . На интервале – ∞ < x ≤ 0 функция – убывает и обратная для нее .

Замечание 3. Если функции y=f(x) и x=g(y) являются взаимно обратными, то они выражают одну и ту же связь между переменными x и y. Поэтому графикомих является одна и та же кривая. Но если аргумент обратной функции мы обозначим снова через x, а функцию через y и построим их в одной системе координат, то получим уже два различных графика. Легко заметить, что графики будут симметричны относительно биссектрисы 1-го координатного угла.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)